## THEORY MOTIVATION FOR FUTURE COLLIDERS

## Tao Han

## University of Pittsburgh

Aspen Center for Physics Winter Conference March 28, 2024


## HEP: Uninterrupted discoveries for more than half a century!

From quarks to the Higgs boson, with heroic efforts in theory and experiments:


## The SM: Most precise theory in science

First time ever, we have a self-consistent theory:

- quantum-mechanical,
- relativistic,
- unitary,
- renormalizable,
- vacuum (quasi) stable, valid up to an exponentially high scale, possible $\mathrm{M}_{\mathrm{Pl}}$ (!?)

1? Dark Matter?
Cosmic inflation?

B-asymmetry?
CP violation? $M_{v}$ ? Scale hierarchy ...

$$
W=\int_{k<\Lambda}[\mathcal{D} g \ldots] \exp \left\{\frac{i}{\hbar} \int d^{4} x \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F^{2}+\bar{\psi} i \not D \psi-\lambda \phi \bar{\psi} \psi+|D \phi|^{2}-V(\phi)\right]\right\}
$$

## Question 1. Electroweak Superconductivity

$10^{-9} \mathrm{~s}$ after the Big Bang, when the Universe was as cold as $10^{15} \mathrm{~K}$, the electroweak phase transition took place. Ever since, the Universe is in an EW super-conducting phase. $V(|\Phi|)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}$


## It's like Landau-Ginzburg Theory:

$$
\begin{aligned}
& F=\alpha(T)|\psi|^{2}+\frac{\beta(T)}{2}|\psi|^{4} \\
& |\psi|^{2}=-\frac{\alpha(T)}{\beta(T)}
\end{aligned}
$$



- an effective phenomenological theory near the phase transition; an "order parameter" description.
- BCS as the underlying theory to understand the dynamical mechanisms, to calculate $\boldsymbol{\alpha}(\mathrm{T}), \boldsymbol{\beta}(\mathrm{T})$ !

It's NOT Landau-Ginzburg Theory The Higgs sector is a consistent scalar quantum field theory, valid to high scales.

$$
\begin{gathered}
V(|\Phi|)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
\langle | \Phi\left\rangle=v=\left(\sqrt{2} G_{F}\right)^{-1 / 2} \approx 246 \mathrm{GeV} \quad m_{H}=\sqrt{2 \lambda v}=125 \mathrm{GeV}\right.
\end{gathered}
$$

For such mass and coupling, the Universe underwent a slow crossover EW phase change.

- The vacuum is a Type II EW superconductor:

$$
\kappa \equiv \frac{\text { penetration depth }}{\text { coherence } l \text { length }}=\frac{m_{H}}{M_{W}} \approx 1.5
$$

- The Higgs boson is weakly coupled, $\lambda \sim 0.13$,
- Very narrow resonance: width $/ \mathrm{m}_{\mathrm{h}} \approx 10^{-5}$.
- Elementary up to a scale $\sim 1000 \mathrm{GeV}$ !

The Higgs boson IS NEW PHYSICS! An underlying theory to calculate $\boldsymbol{\mu}^{2}, \boldsymbol{\lambda}$ ?

## The mass? $V=-\mu^{2}|\phi|^{2}+\lambda|\phi|^{4}$

In Wilsonian EFT, the Higgs mass a "relevant operator":

$$
c_{2} \Lambda^{2} \sim m_{h}^{2}: \lambda v^{2} \sim \mu^{2} \sim(100 \mathrm{GeV})^{2} \sim\left(10^{-16} M_{\text {Planck }}\right)^{2}
$$

"... scalar particles are the only kind of free particles whose mass term does not break either an internal or a gauge symmetry." Ken Wilson, 1970

(a)
$m_{H}^{2}=m_{H 0}^{2} \quad-\frac{3}{8 \pi^{2}} y_{t}^{2} \Lambda^{2}$

(b)
$+\frac{1}{16 \pi^{2}} g^{2} \Lambda^{2}$
h
h h
(c)
$+\frac{1}{16 \pi^{2}} \lambda^{2} \wedge^{2}$

If $\Lambda^{2} \gg m_{H}^{2}$, then unnaturally large cancellations must occur.
As opposed to "technically natural": $\delta^{\delta m_{\omega}^{2} \sim m_{w}^{2} \ln \left(\Lambda / m_{w}\right) \text { (gauge symm) }}$ $\delta m_{f} \sim m_{f} \ln \left(\Lambda / m_{w}\right) \quad($ chiral symm $)$
The "Hierarchy problem" between $\mathrm{m}_{\mathrm{h}} \& \mathrm{M}_{\text {Planck }}$

- $\Lambda \sim 4 \pi$ v near $\mathrm{O}(\mathrm{TeV})$ new dynamics?
- Or new principles: SUSY, extra dim, etc. ?
- Or accept "fine tune": the anthropic principle?

The coupling? $V=-\mu^{2}|\phi|^{2}+\left.\lambda \phi\right|^{4}$
It represents a weakly coupled new force (a fifth force):

- In the $S M, \lambda$ is a free parameter, now measured at LHC energies $\lambda \approx 0.13$
- In SUSY, it is related to the gauge couplings tree-level: $\lambda=\left(\mathrm{g}_{\mathrm{L}}{ }^{2}+\mathrm{g}_{\mathrm{Y}}{ }^{2}\right) / 8 \approx 0.3 / 4 \leftarrow$ a bit too small
- In composite/strong dynamics, harder to make $\lambda$ big enough. (due to the loop suppression by design)

Already possess challenge to BSM theories.

## (Strongest) Motivation for Future Colliders <br> ~ 10 TeV pCM energies <br> Pushing the "Naturalness" limit: <br> The searches for top quark partners \& gluinos, gauginos, \& heavy Higgses ...


$\rightarrow$ Higgs mass fine-tune: $\delta \mathrm{m}_{\mathrm{H}} / \mathrm{m}_{\mathrm{H}} \sim 1 \%(1 \mathrm{TeV} / \Lambda)^{2}$ Thus, $\mathrm{m}_{\text {stop }}>8 \mathrm{TeV} \rightarrow 10^{-4}$ fine-tune!

## Question 2: The Nature of EWSB?

In the SM, $m_{H}^{2}=2 \mu^{2}=2 \lambda v^{2} \Rightarrow \mu \approx 89 \mathrm{GeV}, \lambda \approx \frac{1}{8}$. slow cross-over phase change


With new physics near the EW scale: extended Higgs, Higgs portal to dark sector ...
$V(h) \rightarrow m_{h}^{2}\left(h^{\dagger} h\right)+\frac{1}{2} \lambda\left(h^{\dagger} h\right)^{2}+\frac{1}{3!\Lambda^{2}}\left(h^{\dagger} h\right)^{3}: \rightarrow \lambda_{\text {hhh }}=(7 / 3) \lambda_{\text {hhh }}{ }^{\text {SM }}$ $\rightarrow \frac{1}{2} \lambda\left(h^{\dagger} h\right)^{2} \log \left[\frac{\left(h^{\dagger} h\right)}{m^{2}}\right] \rightarrow \lambda_{\text {hhh }}=(5 / 3) \lambda_{\text {hhh }} \mathrm{SM}$
May result in strong $1^{\text {st }}$ order EWPT!

- Possible EW baryogenesis
- Gravitational wave signals?



## Determining the Higgs self-coupling $\lambda_{\text {hhh }}$

\section*{LHC $\rightarrow$ High Luminosity LHC <br> LHC <br> (Caterina Vernieri) <br> | Run 2 <br> 8M H | LHC |  |  |  |  |  | HL-LHC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Upgrade of accelerator and experiments |  | $\left(300 \mathrm{fb}^{-1}\right)$ |  |  |  |  |  |  | (3ab-1) |
|  |  |  | Run 3 <br> 16M H |  |  |  | HL-LHC installation ATLAS Upgrade |  |  | RUN 4/5 |
|  |  |  | 170M H |  |  |  |
|  |  |  | 120K HH |  |  |  |
| 2019 | 2020 | 2021 |  |  |  |  | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2039 |

\section*{H couplings to: <br> H self-coupling to:

\section*{O(5-10)\%

## O(5-10)\% O(50)\%

 O(50)\%}~ 10 TeV pCM energies
 100 TeV pp $10 \mathrm{TeV} \boldsymbol{\mu}$ collider



## Conclusive test for SM EWPT!

# Question 3. Particle Dark Matter A generalized WIMP 

Consider the "minimal EW dark matter": an EW multi-plet

- The lightest neutral component as DM
- Interactions well defined $\rightarrow$ pure gauge
- Mass upper limit predicted $\rightarrow$ thermal relic abundance

| Model (color, $n, Y$ ) |  | Therm. target | $M_{\mathrm{DM}}<1.8 \mathrm{TeV}\left(\frac{g_{\mathrm{eff}}^{2}}{0.3}\right)$ <br> $\leftarrow$ Higgsino-like |
| :---: | :---: | :---: | :---: |
| (1,2,1/2) | Dirac | 1.1 TeV |  |
| $(1,3,0)$ | Majorana | 2.8 TeV | $\leftarrow$ Wino-like |
| $(1,3, \epsilon)$ | Dirac | 2.0 TeV |  |
| $(1,5,0)$ | Majorana | 14 TeV | Cirelli, Fornengo and Strumia: |
| $(1,5, \epsilon)$ | Dirac | 6.6 TeV | hep-ph/0512090, 0903.3381; |
| $(1,7,0)$ | Majorana | 23 TeV | TH, Z. Liu, L. T. Wang, X. Wang: |
| $(1,7, \epsilon)$ | Dirac | 16 TeV | arXiv:2009.11287 |

## Complementarity of Direct detection \& Colliders



## Advantage of HE lepton colliders:

Key feature different from LHC: the "missing mass"

$$
m_{\mathrm{missing}}^{2} \equiv\left(p_{\mu^{+}}+p_{\mu^{-}}-\sum_{i} p_{i}^{\mathrm{obs}}\right)^{2}
$$

$\mathrm{E}_{\gamma}<\left(s-4 m_{\chi}^{2}\right) / 2 \sqrt{s}, \quad m_{\text {missing }}^{2} \equiv\left(p_{\mu^{+}}+p_{\mu^{-}}-p_{\gamma}\right)^{2}>4 m_{\chi}^{2}$
Direct access to the missing particle mass!


(a cone angle cut: $10^{\circ}<\theta<170^{\circ}$ )

## WIMP Dark Matter coverage Covering the thermal target



TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; arXiv:2203.07351

## Question 4. The "Flavor Puzzle"



- Particle mass hierarchy
- Patterns of quark, neutrino mixings
- Neutrino mass generation (seesaw)
- New CP-violation sources

Higgs is in a pivotal position.

The list of questions continues ...
5. Neutrino mass $\&$ mixing seesaw mechanism $\&$ its scale
6. Matter-Antimatter asymmetry Where is the anti-matter? New CP violation?
7. $\mathbf{E} \& \mathbf{M}+$ Weak + Strong $\rightarrow$ single force?

Grand Unification? proton instability?
8. Larger space-time symmetry?

Super-symmetry? Extra-dim/string theory?
9. Cosmology: inflation, dark energy ...

Does the Higgs play a role?
10. Quantum gravity?

We need answers $\rightarrow$ colliders indispensable!

## P5 report: Recommendation 4

Support a comprehensive effort to develop the resources-theoretical, computational,
and technological-essential to our 20-year vision for the field. This includes an
aggressive R\&D program that, while technologically challenging, could yield
revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.
a. Support vigorous R\&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5, and Recommendation 6).
b. Enhance research in theory to propel innovation, maximize scientific impact of investments in experiments, and expand our understanding of the universe (section 6.1).
c. Expand the General Accelerator R\&D (GARD) program within HEP, including stewardship (section 6.4).
d. Invest in R\&D in instrumentation to develop innovative scientific tools (section 6.3).
e. Conduct R\&D efforts to define and enable new projects in the next decade, including detectors for an $\mathrm{e}^{+} \mathrm{e}^{-}$Higgs factory and 10 TeV pCM collider, Spec-S5, DUNE FD4, Mu2e-II, Advanced Muon Facility, and line intensity mapping (sections 3.1, 3.2, 4.2, 5.1, 5.2, and 6.3).
f. Support key cyberinfrastructure components such as shared software tools and a sustained R\&D effort in computing, to fully exploit emerging technologies for projects. Prioritize computing and novel data analysis techniques for maximizing science across the entire field (section 6.7).
g. Develop plans for improving the Fermilab accelerator complex that are consistent with the longterm vision of this report, including neutrinos, flavor, and a 10 TeV pCM collider (section 6.6).

## Backup slides ...

## SM AS AN EFFECTIVE FIELD THEORY

 "The present educated view of the $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$ standard model, and of general relativity, is again that these are the$$
+i \bar{\Psi} \not \bar{\phi} \psi
$$

leading terms in effective field
$+D_{\mu} \Phi^{\dagger} D^{\mu} \Phi-V(\Phi)$
$+\bar{\Psi}_{L} \hat{Y} \Phi \Psi_{R}+$ h.c. theories."
S. Weinberg, hep-th/9702027

In terms of a physical scale $\Lambda$, below which the theory is valid:

$$
\begin{gathered}
\mathcal{L}=\sum c_{i} \Lambda^{n} \mathcal{O}_{n}=\frac{c_{0} \Lambda^{4}+c_{2} \Lambda^{2} \mathcal{O}_{\operatorname{dim} 2}+c_{3} \Lambda \mathcal{O}_{\operatorname{dim} 3}}{+\underline{c_{4} \mathcal{O}_{\operatorname{dim} 4}}+\frac{c_{6}}{\Lambda^{2}} \mathcal{O}_{\operatorname{dim} 6}+\ldots} \text { (irrelevant operators) }
\end{gathered}
$$

## Higgs boson analogue in CM: In a 2014 report, a collective mode of Tera-Hertz ( $10^{-3} \mathrm{eV}$ ) vibration observed!

Science $\quad$ Science Advances Science Immunology Science Robotics

REPORT
Light-induced collective pseudospin precession resonating with Higgs


Ryusuke Matsunaga ${ }^{1, *}$, Naoto Tsuji ${ }^{1}$, Hiroyuki Fujita ${ }^{1}$, Arata Sugioka ${ }^{1}$, Kazumasa Makise ${ }^{2}$, Yoshinori Uzawa ${ }^{3, \dagger}$, Hirotaka Terai², Zhen Wang ${ }^{2, \ddagger}$, Hideo

## Aoki ${ }^{1,4}$, Ryo Shimano ${ }^{1,5,{ }^{*}}$

## + Author Affiliations

$\downarrow^{*}$ Corresponding author. E-mail: matsunaga@thz.phys.s.u-tokyo.ac.jp (R.M.); shimano@phys.s.u-tokyo.ac.jp (R.S.)
${ }^{+}$Present address: Terahertz Technology Research Center, National Institute of Information and Communications Technology, Tokyo 184-8795, Japan.
$\longleftarrow \ddagger$ Present address: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

Science 05 Sep 2014
Vol. 345, Issue 6201, pp. 1145-1149
DOI: 10.1126/science. 1254697

## How much "tune" is fine-tuned? Atomic physics:

Rydberg cost. $\mathrm{E}_{0} \sim \alpha^{2} \mathrm{~m}_{\mathrm{e}} \rightarrow \mathrm{O}(25 \mathrm{eV})$, very natural!

## Nuclear physics?

|  | Mass (amu) | Binding Energy $(\mathrm{J})$ |  |
| :--- | :--- | :--- | :--- |
|  |  | Total Nucleon |  |
| ${ }_{1}^{2} \mathrm{H}$ | 2.01410 | $3.57 \times 10^{-13}$ | $1.78 \times 10^{-13}$ |
| ${ }_{2}^{3} \mathrm{He}$ | 3.01603 | $1.24 \times 10^{-12}$ | $4.13 \times 10^{-13}$ |
| ${ }_{2}^{4} \mathrm{He}$ | 4.00260 | $4.52 \times 10^{-12}$ | $1.13 \times 10^{-12}$ |
| ${ }_{8}^{16} \mathrm{O}$ | 15.99491 | $2.04 \times 10^{-11}$ | $1.28 \times 10^{-12}$ |
| ${ }_{8}^{17} \mathrm{O}$ | 16.999131 | $2.10 \times 10^{-11}$ | $1.24 \times 10^{-12}$ |
| ${ }_{26}^{56} \mathrm{Fe}$ | 55.934939 | $7.90 \times 10^{-11}$ | $1.41 \times 10^{-12}$ |
| ${ }_{28}^{238} \mathrm{U}$ | 238.0508 | $2.89 \times 10^{-10}$ | $1.22 \times 10^{-12}$ |


$\mathrm{r}_{\mathrm{m}} / \mathrm{d}_{\mathrm{m}}=0.5583 ; \mathrm{r}_{\mathrm{s}} / \mathrm{d}_{\mathrm{s}}$ $=0.5450$ at perigee $\rightarrow \delta \theta / \theta \sim 2.10^{-2}$ rather unnatural!

## Solar eclipses:

Earth Moon

## Pushing the "Naturalness" limit






The Higgs mass fine-tune: $\delta \mathrm{m}_{\mathrm{H}} / \mathrm{m}_{\mathrm{H}} \sim 1 \%(1 \mathrm{TeV} / \Lambda)^{2}$ Thus, $\mathrm{m}_{\text {stop }}>8 \mathrm{TeV} \rightarrow 10^{-4}$ fine-tune $!^{22}$

## Reach at 10 TeV pCM energies

Higgs coupling reach for $\lambda_{\text {hhh }}{ }^{\text {SM }} \rightarrow$
Pushing the "Naturalness" limit: The searches for top quark partners \& gluinos, gauginos ...



$\rightarrow$ Higgs mass fine-tune: $\delta \mathrm{m}_{\mathrm{H}} / \mathrm{m}_{\mathrm{H}} \sim 1 \%(1 \mathrm{TeV} / \Lambda)^{2}$ Thus, $\mathrm{m}_{\text {stop }}>8 \mathrm{TeV} \rightarrow 10^{-4}$ fine-tune!

## Higgs Self-couplings:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{2} m_{H}^{2} H^{2}-\frac{g_{H H H}}{3!} H^{3}-\frac{g_{H H H H}}{4!} H^{4} \\
g_{H H H}=6 \quad v=\frac{3 m_{H}^{2}}{v}, \quad g_{H H H H}=6=\frac{3 m_{H}^{2}}{v^{2}} .
\end{gathered}
$$

LHC


Triple coupling sensitivity: Test the shape of the Higgs potential, and the fate of the EW-phase transition!

Snowmass 1310.8361

|  | HL-LHC | ILC500 | ILC500-up | ILC1000 | ILC1000-up | CLIC1400 | CLIC3000 | HE-LHC | VLHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sqrt{s}(\mathrm{GeV})$ | 14000 | 500 | 500 | $500 / 1000$ | $500 / 1000$ | 1400 | 3000 | 33,000 | 100,000 |
| $\int \mathcal{L} d t\left(\mathrm{fb}^{-1}\right)$ | $3000 / \mathrm{ovpt}$ | 500 | $1600^{\ddagger}$ | $500+1000$ | $1600+2500^{\ddagger}$ | 1500 | +2000 | 3000 | 3000 |
| $\lambda$ | $50 \%$ | $83 \%$ | $46 \%$ | $21 \%$ | $13 \%$ | $21 \%$ | $10 \%$ | $20 \%$ | $8 \%$ |

## New Particle Searches

Electroweak Resonances: Z', W'

$\sim 6 x$ over LHC

Colored Resonances:


## Conclusions

- With ~ 50 year's un-interrupted success, the field remains vibrant.
- The future collider program promises definitive answers to some key questions.
- Precision Higgs@LHC: couplings $\sim 10 \%$; $\lambda_{\text {ннн }} \sim(20-50) \%$ Future Higgs factory/SppC:
Couplings $\sim 0.1 \% ; \lambda_{\text {ннн }}<10 \% \rightarrow$ the EW phase transition! Dark matter coupling ~ 2\% Search for the dark sector
- $\mathrm{FCC}_{\mathrm{hh}}$ / SppC New physics reach:

New particles $\sim 10-30 \mathrm{TeV} \rightarrow$ probe fine-tune $<10^{-4}$ (WIMP) DM mass reach $\sim 1-5 \mathrm{TeV}$ !

- Neutrino, flavor physics / Dark matter searches complementary.

An exciting journey ahead!

