THEORY MOTIVATION FOR FUTURE COLLIDERS

Tao Han University of Pittsburgh

Aspen Center for Physics Winter Conference March 28, 2024

HEP: Uninterrupted discoveries for more than half a century!

From quarks to the Higgs boson, with heroic efforts in theory and experiments:

2

The Standard Model of particle physics

THE SM: Most precise theory in science

First time ever, we have a self-consistent theory:

- quantum-mechanical,
- relativistic,
- unitary,
- renormalizable,
- vacuum (quasi) stable, valid up to an exponentially high scale, possible M_{Pl} (!?)

B-asymmetry? Λ? Dark Matter? CP violation? All known physics M_{ν} ? Scale hierarchy ... **Cosmic inflation?** $W = \int_{h < \Lambda} [\mathcal{D}g \dots] \exp \left\{ \frac{i}{\hbar} \int d^4x \sqrt{-g} \left| \frac{1}{16\pi G} R - \frac{1}{4} F^2 + \bar{\psi} i \not\!\!D \psi - \lambda \phi \bar{\psi} \psi + |D\phi|^2 - V(\phi) \right| \right\}$ spacetime gravity Higgs quantum mechanics strong matter amplitude cur electroweak understanding

Question 1. Electroweak Superconductivity

You are here

Re(d)

 $\approx \frac{1}{8}.$

10⁻⁹ s after the Big Bang, when the Universe was as cold as 10^{15} K, the electroweak phase transition took place. Ever since, the Universe is in an EW super-conducting phase. $V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$

It's like Landau-Ginzburg The

$$F = \alpha(T)|\psi|^{2} + \frac{\beta(T)}{2} |\psi|^{4} |\psi|^{2} = 2\mu^{2} = 2\lambda^{2} \Rightarrow \mu \approx 89 \text{ GeV}, \lambda$$
$$|\psi|^{2} = -\frac{\alpha(T)}{\beta(T)}$$

- an effective phenomenological theory near the phase transition; an "order parameter" description.
- BCS as the underlying theory to understand the dynamical mechanisms, to calculate α(T), β(T)!

It's NOT Landau-Ginzburg Theory The Higgs sector is a consistent scalar quantum field theory, valid to high sca $V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ $<|\Phi|> = v = (\sqrt{2}G_F)^{-1/2} \approx 246 \text{ GeV}$ $m_H = \sqrt{2\lambda}v = 125 \text{ GeV}$ For such mass and coupling, the Universe underwent a slow crossover EW phase change.

- The vacuum is $= Type_{H} = W = 0$ for conductor: $\kappa \equiv \frac{\text{penetration depth}}{\text{coherence}} = 2 \frac{m_{2H}}{M_{W}} \approx 1 \mu 5 \approx 89 \text{ GeV}, \quad \lambda \approx \frac{1}{8}.$
- The Higgs boson is weakly coupled, $\lambda \sim 0.13$,
- Very narrow resonance: width/ $m_h \approx 10^{-5}$.
- Elementary up to a scale ~1000 GeV!

The Higgs boson IS NEW PHYSICS! An underlying theory to calculate μ^2 , λ ?

The mass? $V = (-\mu^2)|\phi|^2 + \lambda |\phi|^4$

In Wilsonian EFT, the Higgs mass a "relevant operator": $c_2\Lambda^2 \sim m_h^2$: $\lambda v^2 \sim \mu^2 \sim (100 \text{ GeV})^2 \sim (10^{-16} M_{\text{Planck}})^2$

"... scalar particles are the only kind of free particles whose mass term does not break either an internal or a gauge symmetry." Ken Wilson, 1970

If $\Lambda^2 \gg m_H^2$, then unnaturally large cancellations must occur.

As opposed to "technically natural": $\frac{\delta m_w^2 \sim m_w^2 \ln(\Lambda/m_w)}{\delta m_f \sim m_f \ln(\Lambda/m_w)}$ (gauge symm) The "Hierarchy problem" between $m_h \& M_{Planck}$ • $\Lambda \sim 4\pi v$ near O(TeV) new dynamics? • Or new principles: SUSY, (textra dim, etc. ?

• Or accept "fine tune": the anthropic principle?

The coupling? $V = -\mu^2 |\phi|^2 + (\lambda)\phi|^4$

It represents a weakly coupled new force (a fifth force):

- In the SM, λ is a free parameter, now measured at LHC energies $\lambda \approx 0.13$
- In SUSY, it is related to the gauge couplings tree-level: $\lambda = (g_L^2 + g_Y^2)/8 \approx 0.3/4 \leftarrow a$ bit too small
- In composite/strong dynamics, harder to make λ big enough.
 (due to the loop suppression by design)

Already possess challenge to BSM theories.

(STRONGEST) MOTIVATION FOR FUTURE COLLIDERS ~ 10 TeV pCM energies

Pushing the "Naturalness" limit: The searches for top quark partners & gluinos, gauginos, & heavy Higgses ...

→ Higgs mass fine-tune: $\delta m_H/m_H \sim 1\% (1 \text{ TeV}/\Lambda)^2$ Thus, $m_{stop} > 8 \text{ TeV} \rightarrow 10^{-4}$ fine-tune!

Determining the Higgs self-coupling λ_{hhh}

Question 3. Particle Dark Matter A generalized WIMP

Consider the "minimal EW dark matter": an EW multi-plet

- The lightest neutral component as DM
- Interactions well defined \rightarrow pure gauge
- Mass upper limit predicted \rightarrow thermal relic abundance

			$\left(q_{\rm eff}^2 \right)$						
Model		Therm.	$M_{\rm DM} < 1.8 { m TeV}\left(\frac{3{ m en}}{0.3} ight)$						
$(\operatorname{color}, n, Y)$		target							
$(1,\!2,\!1/2)$	Dirac	1.1 TeV	← Higgsino-like						
$(1,\!3,\!0)$	Majorana	2.8 TeV	← Wino-like						
$(1,3,\epsilon)$	Dirac	2.0 TeV							
(1,5,0)	Majorana	14 TeV	Cirelli, Fornengo and Strumia:						
$(1,5,\epsilon)$	Di								
(1,7,0)	Figure 5: Thern Curve adding	nal relic DM ab Sommerfeld co	undance coAptindances account tree-level scatterings (blue prections (red curve), and adding bound state formation (ma-						
$(1,\!7,\!\epsilon)$	gen \mathbb{D}_{1} We consider DM as a fermion $\mathrm{SU}(2)_{L}$ triplet (left panel) and as a fermion quintuplet								
	<u>(right panel)</u> . In the first case the $SU(2)_L$ -invariant approximation is not good, but it's enough to show that bound states have a periodicible impact. If the latter effect the $SU(2)_L$								
	approximation i	is reasonably go	ood, and adding boundestates has a sizeable effect. — Perturbative						

Complementarity of Direct detection & Colliders

Advantage of HE lepton colliders: Key feature different from LHC: the "missing mass"

$$\begin{split} m_{\text{missing}}^2 &\equiv (p_{\mu^+} + p_{\mu^-} - \sum_i p_i^{\text{obs}})^2 \\ \mathbf{E}_{\gamma} < (s - 4m_{\chi}^2)/2\sqrt{s}, \qquad m_{\text{missing}}^2 &\equiv (p_{\mu^+} + p_{\mu^-} - p_{\gamma})^2 > 4m_{\chi}^2 \end{split}$$

(a cone angle cut: $10^{\circ} < \theta < 170^{\circ}$)

WIMP Dark Matter coverage Covering the thermal target

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; arXiv:2203.07351

Question 4. The "Flavor Puzzle"

- Particle mass hierarchy
- Patterns of quark, neutrino mixings
- Neutrino mass generation (seesaw)
- New CP-violation sources

Higgs is in a pivotal position.

The list of questions continues ... 5. Neutrino mass & mixing seesaw mechanism & its scale 6. Matter-Antimatter asymmetry Where is the anti-matter? New CP violation? 7. E&M + Weak + Strong > single force? Grand Unification? proton instability? 8. Larger space-time symmetry? Super-symmetry? Extra-dim/string theory? 9. Cosmology: inflation, dark energy ... Does the Higgs play a role? 10. Quantum gravity? We need answers \rightarrow colliders indispensable!

P5 report: Recommendation 4

Support a comprehensive effort to develop the resources – theoretical, computational,

and technological-essential to our 20-year vision for the field. This includes an

aggressive R&D program that, while technologically challenging, could yield

revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

- a. Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5, and Recommendation 6).
- b. Enhance research in theory to propel innovation, maximize scientific impact of investments in experiments, and expand our understanding of the universe (section 6.1).
- c. Expand the General Accelerator R&D (GARD) program within HEP, including stewardship (section 6.4).
- d. Invest in R&D in instrumentation to develop innovative scientific tools (section 6.3).
- Conduct R&D efforts to define and enable new projects in the next decade, including detectors for an e+e- Higgs factory and 10 TeV pCM collider, Spec-S5, DUNE FD4, Mu2e-II, Advanced Muon Facility, and line intensity mapping (sections 3.1, 3.2, 4.2, 5.1, 5.2, and 6.3).
- f. Support key cyberinfrastructure components such as shared software tools and a sustained R&D effort in computing, to fully exploit emerging technologies for projects. Prioritize computing and novel data analysis techniques for maximizing science across the entire field (section 6.7).
- g. Develop plans for improving the Fermilab accelerator complex that are consistent with the longterm vision of this report, including neutrinos, flavor, and a 10 TeV pCM collider (section 6.6).

Backup slides ...

SM AS AN EFFECTIVE FIELD THEORY

"The present educated view of the $\mathcal{L} = -\frac{1}{A}F_{\mu\nu}F^{\mu\nu}$ standard model, and of general relativity, is again that these are the leading terms in effective field theories." S. Weinberg, hep-th/9702027

 $+i\bar{\Psi}D\psi$ $+ D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi)$ $+ \bar{\Psi}_L \hat{Y} \Phi \Psi_R + h.c.$

In terms of a physical scale Λ , below which the theory is valid:

 $\mathcal{L} = \sum c_i \Lambda^n \mathcal{O}_n = c_0 \Lambda^4 + c_2 \Lambda^2 \mathcal{O}_{\dim 2} + c_3 \Lambda \mathcal{O}_{\dim 3}$ $+ \underline{c_4 \mathcal{O}_{\dim 4}} + \frac{c_6}{\Lambda^2} \mathcal{O}_{\dim 6} + \dots$ (marginal operators) (irrelevant operators)

Higgs boson analogue in CM: In a 2014 report, a collective mode of Tera-Hertz (10⁻³ eV) vibration observed!

REPORT

SHARE

8+

0

Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor

Ryusuke Matsunaga^{1,*}, Naoto Tsuji¹, Hiroyuki Fujita¹, Arata Sugioka¹, Kazumasa Makise², Yoshinori Uzawa^{3,†}, Hirotaka Terai², Zhen Wang^{2,‡}, Hideo Aoki^{1,4}, Ryo Shimano^{1,5,*}

+ Author Affiliations

←^{*}Corresponding author. E-mail: matsunaga@thz.phys.s.u-tokyo.ac.jp (R.M.); shimano@phys.s.u-tokyo.ac.jp (R.S.)

← † Present address: Terahertz Technology Research Center, National Institute of Information and Communications Technology, Tokyo 184-8795, Japan.

← ‡ Present address: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

Science 05 Sep 2014: Vol. 345, Issue 6201, pp. 1145-1149 DOI: 10.1126/science.1254697

How much "tune" is fine-tuned? Atomic physics: Rydberg const. $E_0 \sim \alpha^2 m_e \rightarrow O(25 \text{ eV})$, very natural!

Nuclear physics?

	Mass (amu)	Binding Energy (J)	
		Total	Per Nucleon
$^{2}_{1}H$	2.01410	3.57×10^{-13}	1.78×10^{-13}
$^3_2\mathrm{He}$	3.01603	1.24×10^{-12}	4.13×10^{-13}
$^{4}_{2}\mathrm{He}$	4.00260	4.52×10^{-12}	1.13×10^{-12}
$^{16}_{8}{ m O}$	15.99491	2.04×10^{-11}	1.28×10^{-12}
¹⁷ 8O	16.999131	2.10×10^{-11}	1.24×10^{-12}
⁵⁶ ₂₆ Fe	55.934939	7.90×10^{-11}	1.41×10^{-12}
²³⁸ 92U	238.0508	2.89×10^{-10}	1.22×10^{-12}

 $r_m/d_m = 0.5583; r_s/d_s$ =0.5450 at perigee $\rightarrow \delta\theta/\theta \sim 2.10^{-2}$ rather unnatural!

Pushing the "Naturalness" limit

Reach at 10 TeV pCM energies Higgs coupling reach for $\lambda_{hhh}^{SM} \rightarrow$

Pushing the "Naturalness" limit: The searches for top quark partners & gluinos, gauginos ...

muC 10 TeV

gauginos

muC 10 TeV

8

6

HUL-LHC

CLIC 3 TeV

FCC-hh

CLIC 3 TeV

2

HL-LHC

Search Method

strong production high mass splitting

weak production

Higgsino

 $\Delta M = 5 \text{ GeV}$

small mass splitting

stop 2-body

 \rightarrow Higgs mass fine-tune: $\delta m_H/m_H \sim 1\% (1 \text{ TeV}/\Lambda)^2$ Thus, $m_{stop} > 8 \text{ TeV} \rightarrow 10^{-4}$ fine-tune!

10

Higgs Self-couplings:

	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC1400	CLIC3000	HE-LHC	VLHC
$\sqrt{s} \; ({ m GeV})$	14000	500	500	500/1000	500/1000	1400	3000	33,000	100,000
$\int \mathcal{L}dt \; (\mathrm{fb}^{-1})$	3000/expt	500	1600^{\ddagger}	500 + 1000	$1600 + 2500^{\ddagger}$	1500	+2000	3000	3000
λ	50%	83%	46%	21%	13%	21%	10%	20%	8%

New Particle Searches

Electroweak Resonances: Z',W'

Colored Resonances:

Conclusions

 With ~ 50 year's un-interrupted success, the field remains vibrant.

- The future collider program promises definitive answers to some key questions.
 - Precision Higgs@LHC: couplings~10%; λ_{HHH} ~ (20-50)%
 Future Higgs factory/SppC:
 - Couplings~0.1%; λ_{HHH} < 10% → the EW phase transition! Dark matter coupling ~ 2% Search for the dark sector
 FCC_{hh} / SppC New physics reach: New particles~10 – 30 TeV → probe fine-tune < 10⁻⁴ (WIMP) DM mass reach ~ 1 – 5 TeV !
 - Neutrino, flavor physics / Dark matter searches complementary.

An exciting journey ahead!