Short-Baseline Neutrino Experiments

Georgia Karagiorgi, Columbia University

2024 Aspen Winter Conference

Aspen Center for Physics March 24-29, 2024

***Disclaimers**

1. This talk will focus on only (a subset of) accelerator-based short-baseline neutrino experiments.

For a comprehensive review of experimental (and theoretical) landscape:

Snowmass White Paper by NF02 Topical Group: Understanding Experimental Neutrino Anomalies

White Paper on Light Sterile Neutrino Searches and Related Phenomenology

M. A. Acero,^{2,*} C. A. Argüelles,^{23,*} M. Hostert,^{58,59,70,*} D. Kalra,^{13,*} G. Karagiorgi,^{13,*} K. J. Kelly,^{11,*} B. R. Littlejohn,^{31,*} P. Machado,^{19,*} W. Pettus,^{33,*} M. Toups,^{19,*} M. Ross-Lonergan,^{13,*} A. Sousa,^{12,*} P. T. Surukuchi,^{106,*} Y. Y. Y. Wong,^{66,*} W. Abdallah,^{108,†} A. M. Abdullahi,^{19,41,†} R. Akutsu,^{90,†} L. Alvarez-Ruso,^{29,†} D. S. M. Alves,^{51,†} A. Aurisano,^{12,†} A.B. Balantekin,^{109,†} J. M. Berryman,^{5, 38,†} T. Bertólez-Martínez,^{4,†} J. Brunner,^{110,†} M. Blennow,^{48,53,68,†} S. Bolognesi,^{79,†} M. Borusinski,^{22,†} T.Y. Chen,^{13,†} D. Cianci,^{13,†} G. Collin,^{1,†} J.M. Conrad,^{62,†} B. Crow,^{22,†} P. B. Denton,^{8,†} M. Duvall,^{22,†} E. Fernández-Martinez,^{53,†} C. S. Fong,^{97,†} N. Foppiani,^{23,†} D. V. Forero,^{56,†} M. Friend,^{27,45,†} A. García-Soto,^{23,29,†} C. Giganti,^{40,†} C. Giunti,^{36,†} R. Gandhi,^{111,†} M. Ghosh,^{26,†} J. Hardin,^{62,†} K. M. Heeger,^{106,†} M. Ishitsuka,^{89,†} A. Izmaylov,^{32,37,†} B. J. P. Jones,^{100, †} J. R. Jordan,^{3, †} N. W. Kamp,^{62, †} T. Katori,^{46, †} S. B. Kim,^{83, †} L. W. Koerner,^{25, †} M. Lamoureux,^{35, †} T. Lasserre,^{79, †} K.G. Leach,^{57, †} J. Learned,^{22, †} Y. F. Li,^{30, 112, †} J. M. Link,^{102, †} W. C. Louis,^{51,†} K. Mahn,^{64,†} P. D. Meyers,^{74,†} J. Maricic,^{22,†} D. Markoff,^{65,†} T. Maruyama,^{27,†} S. Mertens,^{63,88,†} H. Minakata,^{102,†} I. Mocioiu,^{71,†} M. Mooney,^{14,†} M.H. Moulai,^{105,†} H. Nunokawa,^{76,†} J. P. Ochoa-Ricoux, ^{42,†} Y. M. Oh.^{28,†} T. Ohlsson, ^{68,48,†} H. Päs, ^{15,†} D. Pershey, ^{17,†} R. G. H. Robertson, ^{104,†} S. Rosauro-Alcaraz, ^{39,†} C. Rott, ^{83,99,†} S. Roy, ^{113,†} J. Salvado, ^{4,†} M. Scott, ^{32,†} S. H. Seo, ^{28,†} M. H. Shaevitz, ^{13,†} M. Smiley, ^{5,52,†} J. Spitz, ^{3,†} J. Stachurska, ^{62,†} M. Tammaro, ¹¹⁴ T. Thakore, ^{12,†} C.A. Ternes, ^{36,†} A. Thompson, ^{61,†} S. Tseng,^{86, †} B. Vogelaar,^{102, †} T. Weiss,^{106, †} R. A. Wendell,^{49,87, †} R.J. Wilson,^{14, †} T. Wright,^{102, †} Z. Xin,^{30,112,†} B. S. Yang,^{81,†} J. Yoo,^{81,†} J. Zennamo,^{19,†} J. Zettlemover,^{19,†} J. D. Zornoza,^{29,†} J. Zupan,¹² S. Ahmad,⁷² E. Arrieta-Diaz,⁵⁴ V. S. Basto-Gonzalez,⁶⁹ N. S. Bowden,⁵⁰ B. C. Cañas,⁶⁹ D. Caratelli,⁹³ C. V. Chang.⁸⁴ C. Chen.⁸⁴ T. Classen.⁵⁰ M. Convery.¹¹⁵ G. S. Davies.⁶⁰ S. R. Dennis.⁹ Z. Djurcic.¹¹⁶ R. Dorrill,³¹ Y. Du,¹¹⁷ J.J. Evans,⁵⁵ U. Fahrendholz,⁸⁸ J. A. Formaggio,⁶² B. T. Foust,¹⁰⁶ H. Frandini Gatti,¹⁹ D. Garcia-Gamez,²¹ S. Gariazzo,³⁶ J. Gehrlein,⁸ C. Grant,⁷ R. A. Gomes,²⁰ A. B. Hansell,⁸² F. Halzen,¹⁰⁵ S. Ho,⁴⁷ J. Hoefken Zink,^{6, 34} R. S. Jones,⁸⁰ P. Kunkle,⁷ J.- Y. Li,¹⁸ S. C. Li,^{102, 77} X. Luo,⁹³ Yu, Malvshkin, 37, 44 C.J. Martoff, 85 D. Massaro, 6, 95, 34 A. Mastbaum, 78 R. Mohanta, 26 H.P. Mumm, 67 M. Nebot-Guinot,¹⁸ R. Neilson,¹⁶ K. Ni,⁹⁴ J. Nieves,²⁹ G. D. Orebi Gann.^{5,52} V. Pandev.⁹⁶ S. Pascoli ^{6,34} G. Paz ¹⁰³ A. A. Petrov ^{103,98} X. Oian ⁸ M. Rajaoalisoa ¹² S. H. Razafinime ¹² C. Roca ⁵⁰ G. Ron,²⁴ B. Roskovec,⁷³ E. Saul-Sala,²⁹ L. Saldaña,¹⁰⁶ D. W. Schmitz,⁹¹ K. Scholberg,¹⁷ B. Shakva,¹¹⁸ P. L. Slocum,¹⁰⁶ E.L. Snider,¹⁹ H. Th. J. Steiger,^{43,75,88} A. F. Steklain,¹⁰¹ M. R. Stock,⁸⁸ F. Sutanto,⁵⁰ V. Takhistov,⁸⁷ R. Tayloe,³³ Y.-D. Tsai,⁹² Y.-T. Tsai,¹¹⁵ D. Venegas-Vargas,²¹ M. Wallbank,¹² E. Wang,¹⁰⁷ P. Weatherly,¹⁶ S. Westerdale,⁷⁴ E. Worcester,⁸ W. Wu,¹⁹ G. Yang,⁵ and B. Zamorano²¹ ¹Department of Physics, University of Adelaide, Adelaide, SA, Australia

²Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia ³University of Michigan, Ann Arbor, MI, 48109, USA ⁴Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain ⁵Department of Physics, University of California, Berkeley, CA 94720, USA ⁶Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy ⁷Department of Physics, Boston University, Boston, MA 02215, USA ⁸Physics Department, Brookhaven National Laboratory, Upton, NY, USA ⁹Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ¹⁰Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA ¹¹CERN, Esplanade des Particules, 1211 Geneva 23, Switzerland ¹²Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA ¹³Columbia University, New York, NY, USA ¹⁴Colorado State University, Fort Collins, CO, USA ¹⁵ TU Dortmund. Department of Physics, D-44221, Dortmund, Germany ¹⁶Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA ¹⁷Department of Physics, Duke University, Durham, NC 27708, USA ¹⁸University of Edinburgh, Edinburgh EH8 9YL, United Kingdom ¹⁹Fermi National Accelerator Laboratory, Batavia, IL, USA

***Disclaimers**

1. This talk will focus on only (a subset of) accelerator- based short-baseline neutrino experiments.

For an abbreviated summary:

Snowmass Report by NF02 Topical Group

SNOWMASS NEUTRINO FRONTIER: NF02 TOPICAL GROUP REPORT UNDERSTANDING EXPERIMENTAL NEUTRINO ANOMALIES

SUBMITTED TO THE PROCEEDINGS OF THE US COMMUNITY STUDY ON THE FUTURE OF PARTICLE PHYSICS (SNOWMASS 2021)

G. Karagiorgi¹, B. R. Littlejohn², P. Machado³, A. Sousa⁴, on behalf of the NF02 Topical Group Community^{*}

¹COLUMBIA UNIVERSITY, NEW YORK, NY 10027, USA
 ²ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO, IL 60616, USA
 ³FERMI NATIONAL ACCELERATOR LABORATORY, BATAVIA, IL, USA
 ⁴DEPARTMENT OF PHYSICS, UNIVERSITY OF CINCINNATI, CINCINNATI, OH 45221, USA

***Disclaimers**

- 1. This talk will focus on only (a subset of) accelerator- based short-baseline neutrino experiments.
- 2. I will present primarily **my own views**.

A Century of Experimental Neutrino Anomalies

Early 1930s: Missing energy in beta decay

1960s...+: **Solar** neutrino deficit

1970s...+: Atmospheric neutrino deficit

1990s...+: LSND, MiniBooNE accelerator neutrino excesses 1990s...+: Gallium radioactive source neutrino deficit

A Century of Experimental Neutrino Anomalies ... and Triumphs!

Early 1930s: Missing energy in beta decay

Neutrino discovery in 1956s!

1960s...+: **Solar** neutrino deficit

1970s...+: Atmospheric neutrino deficit

Neutrino oscillation discoveries in 1998 and 2002!

1990s...+: LSND, MiniBooNE accelerator neutrino excesses

1990s...+: Gallium radioactive source neutrino deficit

A Century of Experimental Neutrino Anomalies ... and Triumphs!

Early 1930s: Missing energy in beta decay

Neutrino discovery in 1956s!

1960s...+: **Solar** neutrino deficit

1970s...+: Atmospheric neutrino deficit

Neutrino oscillation discoveries in 1998 and 2002!

1990s...+: LSND, MiniBooNE accelerator neutrino excesses

1990s...+: Gallium radioactive source neutrino deficit

A Century of Experimental Neutrino Anomalies

Early 1930s: Missing energy in beta decay

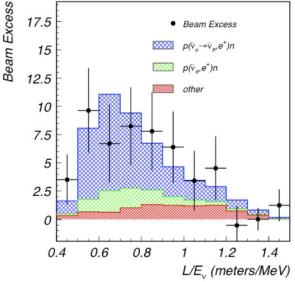
Neutrino scovery in 1956s! "Anomalous": Each signal is 1960 In neutconsistent with (unexpected) oscillations tmospherical Lero O (at "short baseline"). Neutrino osc Beyond 3 neutrinos!?nd 2002!

1990s...+: LSND, MiniBooNE accelerator neutrino excesses 1990s...+: Gallium radioactive source neutrino deficit

... quo vadis ???

LSND, MiniBooNE, and Gallium Anomalies

LSND Anomaly

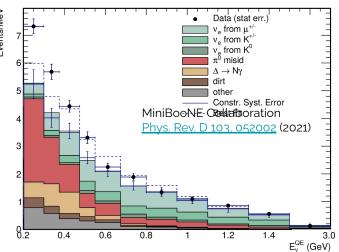


Studied a beam of muon neutrinos from **muon decay-at-rest**, using a liquid scintillator detector.

Well-understood neutrino production and detection processes.

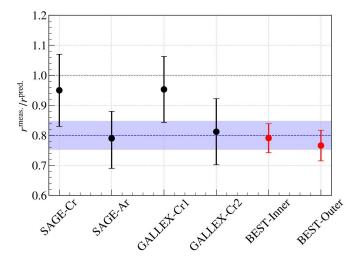
Observed a **3.8** σ excess electron antineutrinos at L~30m (L/E ~1m/MeV).

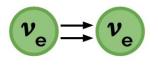
MiniBooNE Anomaly

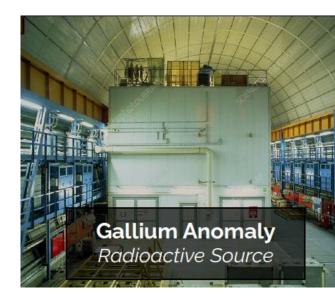

Studied neutrinos from a meson decay-in-flight source (~few hundred MeV mean neutrino energy) using a cherenkov detector.

Employed *in situ* constraints of flux/cross-section uncertainties and backgrounds.

$$v_{\mu}$$

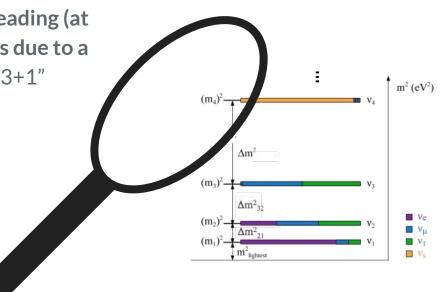

Saw at **4.8** σ evidence of excess electron neutrinos at L~500m (L/E ~1m/MeV).




Gallium Anomaly

SAGE and **GALLEX** experiments studied electron neutrinos from intense radioactive sources of ⁵¹Cr and ³⁷Ar deployed within their detectors.

Saw deficits of electron neutrinos as a function of detector radius (L/E ~1m/MeV).

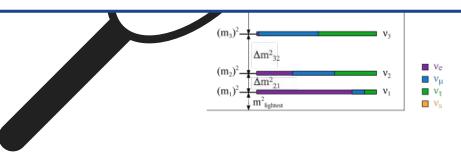


Recently confirmed by **BEST** experiment Phys. Rev. Lett. **128**, 232501 (2022)

Combined $\sim 4.0\sigma$ effect.

The Last Decade

Following the previous P5 Recommendations, the community has successfully mounted **"a diverse** program of small-experiments aimed at directly addressing these anomalies and probing the leading (at the time) theoretical explanation: oscillations due to a single eV-scale, mostly sterile neutrino, or a "3+1" scenario.



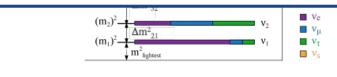
The Last Decade

Following the previous P5 Recommendations,

the community has successfully mounted "a divorse

- Reactor short-baseline anomaly now understood as limitations in our understanding of reactor fluxes
- Gallium anomaly strikingly confirmed by direct test with BEST experiment
- Further MiniBooNE running and MicroBooNE results have revealed a complex picture seemingly at odds with 3+1... (more on this later)
- JSNS² and SBN accelerator-based programs initiated and now online, promising powerful tests of MiniBooNE and LSND... (more on this later)

The Last Decade


Following the previous P5 Recommendations,

the community has successfully mounted "a divorse

• Reactor short-baseline anomaly now understood as limitations in our understanding of

Community efforts beyond P5 Recommendations:

- Complementary data sets from non-short-baseline experiments including MINOS/MINOS+, IceCube, T2K, NOvA, SuperK, KATRIN... have been used to confront 3+1 oscillations
- A rich array of additional new physics models—from exotic flavor transformation to hidden sector couplings—that represent viable interpretations of the anomalies have been developed

The Last Decade >>>>> Today

Following the previous P5 Recommendations,

the community has successfully mounted "a divorse

Reactor short-baseline anomaly now understood as limitations in our understanding of
 Community efforts beyond P5 Recommendations:

 Complementary data sets from non-short-baseline experiments including
 MINOS/MINOS+ LeeCube T2K_NOvA_SuperK_KATPIN__baye been used to confront

 Though much has been learned, the LSND, MiniBooNE and Gallium short-baseline anomalies still stand unexplained, and serve as compelling reasons to probe deeper and wider toward more "exotic" theoretical interpretations.
 Experimental and theory communities are both actively engaged in this endeavor!

🔲 V.,

 Δm^2

The Last Decade >>>>> Today

Following the previous P5 Recommendations,

Revelations within Theoretical Community

Three broad categories of theoretical interpretations have emerged over the past ~5-10 years:

- 1. Flavor conversion models
- 2. Dark sector portals
- 3. Standard Model or "conventional" explanations

"Vanilla" 3+1 (also 3+2 and 3+3) light sterile neutrino oscillations?

Significant tensions in global data sets disfavor this interpretation *Caveat: Treatment of all global data sets using consistent assumptions (e.g. flux, cross-section) is challenging

[lots of work by Giunti, Schwetz, Conrad, Diaz, Kamp, GK, Arguelles, Kopp, Machado, Maltoni, ...]

NEEDED, in order to put this model to rest:

- 1. Comprehensive, multi-channel oscillation searches that account for oscillation effects and systematic correlations across different flavor measurements
- 2. Resolution of MiniBooNE low-energy excess (cannot be entirely vanilla 3+N oscillations)

"Vanilla" 3+1 (also 3+2 and 3+3) light sterile neutrino oscillations?

Significant tensions in global data sets disfavor this interpretation *Caveat: Treatment of all global data sets using consistent assumptions (e.g. flux, cross-section) is challenging

[lots of work by Giunti, Schwetz, Conrad, Diaz, Kamp, GK, Arguelles, Kopp, Machado, Maltoni, ...]

NEEDED, in order to put this model to rest:

- **1.** Comprehensive, multi-channel oscillation searches that account for oscillation effects and systematic correlations across different flavor measurements
- 2. Resolution of MiniBooNE low-energy excess (cannot be entirely vanilla 3+N oscillations)

Efforts in this front already well underway! (more on this later)

"Vanilla" 3+1 (also 3+2 and 3+3) light sterile neutrino oscillations?

Overlooked, or other new physics?

- (3+1) + non-standard interactions (e.g. quasi-sterile neutrinos)
- (3+1) + sterile neutrino decay
- Lepton-flavor-violating μ decays
- Large extra dimensions and altered dispersion relations affecting neutrino propagation
- Lorentz violation

. . .

[lots of work by Ballet, Pascoli, Bertuzzo, Conrad, De Gouvea, Dentler, Gariazzo, Giunti, Gninenko, Hostert, Ross-Lonergan, Kopp, Lavender, Li, Maltoni, Alves, Palomares-Ruiz, Babu, Martinez-Soler, Pascoli, Peres, Schwetz, Shaevitz, Spitz, Stenico, Tsai, Zukanovich, ...]

"Vanilla" 3+1 (also 3+2 and 3+3) light sterile neutrino oscillations?

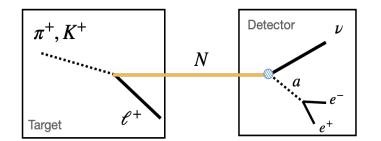
Overlooked, or other new physics?

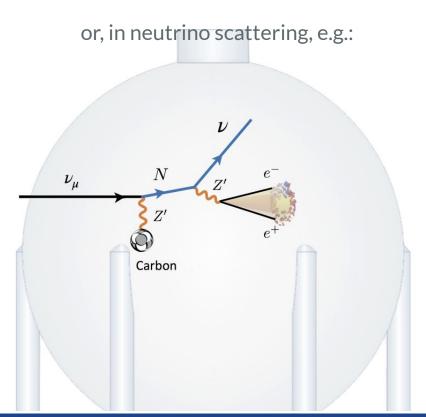
For further details, see Snowmass NF02 White Paper: https://arxiv.org/abs/2203.07323

Anomalies

- (3+1) + non-standard interac
- (3+1) + sterile neutrino deca
- Lepton-flavor-violating μ dec
- Large extra dimensions and a
- Lorentz violation

All of these models can be tested with current and upcoming experiments!


Category	Model	Signature		Anomalie		
		Signature	LSND	MiniBooNE	Reactor	Gallium
	(3+1) oscillations	oscillations	1	~	1	1
Flavor						
Conversion: Transitions	(3+1) w/ invisible sterile decay	oscillations w/ $ u_4$ invisible decay	1	~	1	1
	(3+1) w/ sterile decay	$ u_4 ightarrow \phi u_e$	1	1	1	1
Flavor	(3+1) w/ anomalous matter effects	$ u_{\mu} ightarrow u_{e}$ via matter effects	1	1	×	×
Conversion: Matter Effects	(3+1) w/ quasi-sterile neutrinos	$ u_{\mu} \rightarrow \nu_{e} \text{ w}/ $ resonant ν_{s} matter effects	1	~	1	1
Flavor	lepton-flavor-violating μ decays	$\mu^+ \to e^+ \nu_\alpha \overline{\nu_e}$	1	×	×	×
Conversion: Flavor Violation	neutrino-flavor- changing bremsstrahlung	$ u_{\mu}A \to e\phi A$			×	X


 \checkmark - the model can naturally explain the anomaly, \checkmark - the model can partially explain the anomaly, \varkappa - the model cannot explain the anomaly.

2. Dark Sector Portals

Associated with new particle production, and provide LSND/MiniBooNE interpretations:

in "neutrino beams", e.g.:

2. Dark Sector Portals

Associated with new particle production, and targeting LSND/MiniBooNE interpretations:

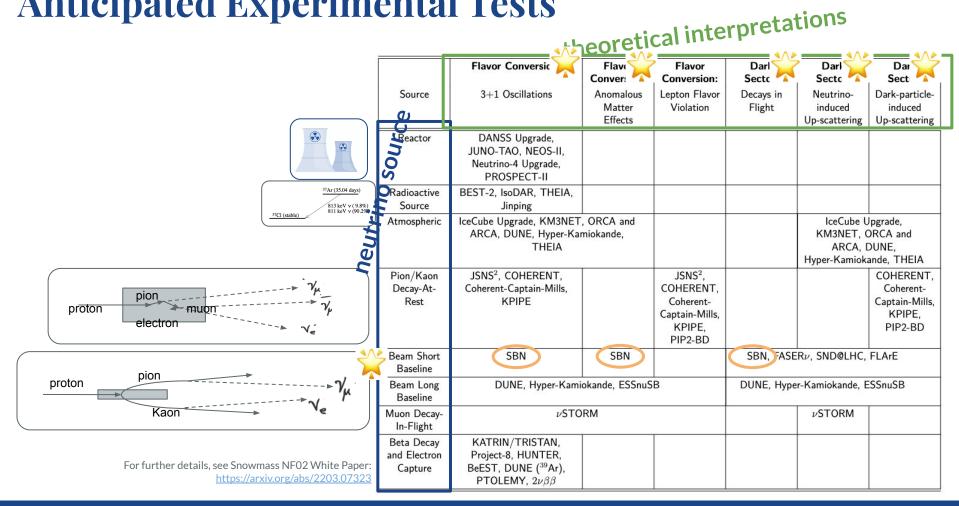
in "neutrino beams", e.g.:

or, in neutrino scattering, e.g.:

experiments!

For further details, see Snowmass NF02 White Paper: https://arxiv.org/abs/2203.07323

Catagony	Model	Signature	Anomalies				
Category	Widdei	Signature	LSND	MiniBooNE	Reactor	Gallium	
Dark Sector:	transition magnetic mom., heavy ν decay	$N o u \gamma$	×	1	×	×	ν
Decays in Flight	dark sector heavy neutrino decay	$egin{aligned} & N ightarrow u(X ightarrow \ e^+e^-) \ { m or} \ & N ightarrow u(X ightarrow \gamma \gamma) \end{aligned}$	X	~	×	×	Z' e-
Dark Sector: Neutrino	neutrino-induced up-scattering	$ \begin{array}{c} \nu A \rightarrow N A, \\ N \rightarrow \nu e^+ e^- \text{ or } \\ N \rightarrow \nu \gamma \gamma \end{array} $	1	~	×	×	e^+
Scattering	neutrino dipole up-scattering	$\nu A \to N A, \\ N \to \nu \gamma$	1	~	×	×	
Dark Sector: Dark Matter Scattering	dark particle-induced up-scattering	γ or e^+e^-	×	1	×	×	
	dark particle-induced inverse Primakoff	γ	1	~	×	×	All of these models can be tested with current and upcoming


 \checkmark - the model can naturally explain the anomaly, \checkmark - the model can partially explain the anomaly, \varkappa - the model cannot explain the anomaly.

Anticipated Experimental Tests

theoretical interpretations

	THEOR CO						
		Flavor Conversion:	Flavor	Flavor	Dark	Dark	Dark
			Conversion:	Conversion:	Sector:	Sector:	Sector:
	Source	3+1 Oscillations	Anomalous	Lepton Flavor	Decays in	Neutrino-	Dark-particle-
	<i>a</i> .		Matter	Violation	Flight	induced	induced
	U U		Effects		0.215	Up-scattering	Up-scattering
	Reactor	DANSS Upgrade,					
	2	JUNO-TAO, NEOS-II,					
	0	Neutrino-4 Upgrade,					
		PROSPECT-II					
³⁷ Ar (35.04 days)	Radioactive	BEST-2, IsoDAR, THEIA,					
37CI (stable) 813 keV v (9.8%) 811 keV v (90.2%)	Source	Jinping					
	Atmospheric	IceCube Upgrade, KM3NET	, ORCA and			IceCube U	
		ARCA, DUNE, Hyper-Kar	niokande,			KM3NET, C	
		THEIA				ARCA, [
						Hyper-Kamioka	
	Pion/Kaon	JSNS ² , COHERENT,		JSNS ² ,			COHERENT,
pion \u03c6	Decay-At-	Coherent-Captain-Mills,		COHERENT,			Coherent-
proton	Rest	KPIPE		Coherent-			Captain-Mills, KPIPE,
electron				Captain-Mills, KPIPE,			PIP2-BD
				PIP2-BD			FIF2-DD
	Beam Short	SBN	SBN	11200		Rν, SND@LHC,	
	Baseline	JDIV	JDIN		JDIN, FAJE	INP, SNDELAC,	
proton pion	Beam Long	DUNE Hunge Kami	Hunar Kamiakanda ECCauSP DUNE Hunar Kamiakanda ECCauS				CCnuCD
	Baseline	DUNE, Hyper-Kamiokande, ESSnuSB DUNE, Hyper-Kamiokande, ESSnuSB					SSNUSB
Kaon	Muon Decay-	νSTORM				νSTORM	
	In-Flight	V3 I OKM					
	Beta Decay	KATRIN/TRISTAN,				с. С	
	and Electron	Project-8, HUNTER,					
For further details, see Snowmass NF02 White Paper:	Capture	BeEST, DUNE (³⁹ Ar),					
https://arxiv.org/abs/2203.07323	cupture	PTOLEMY, $2\nu\beta\beta$					

Anticipated Experimental Tests

Short-Baseline Neutrino (SBN) Program at Fermilab

A trio of liquid argon time projection chamber (LArTPC) detectors at different (short) baselines, in the same (BNB) beamline as MiniBooNE; can fully test a vast array of MiniBooNE anomaly interpretations: conventional origins, flavor transformation, new particle production in the beam or in neutrino scattering

MicroBooNE

170t LAr

νμ

m008

LEDERMAN SCIENCE CENTER

ν

NOVA

PROTO

Far Detector

ICARUS

760t LAr

v

μ

MiniBooNE

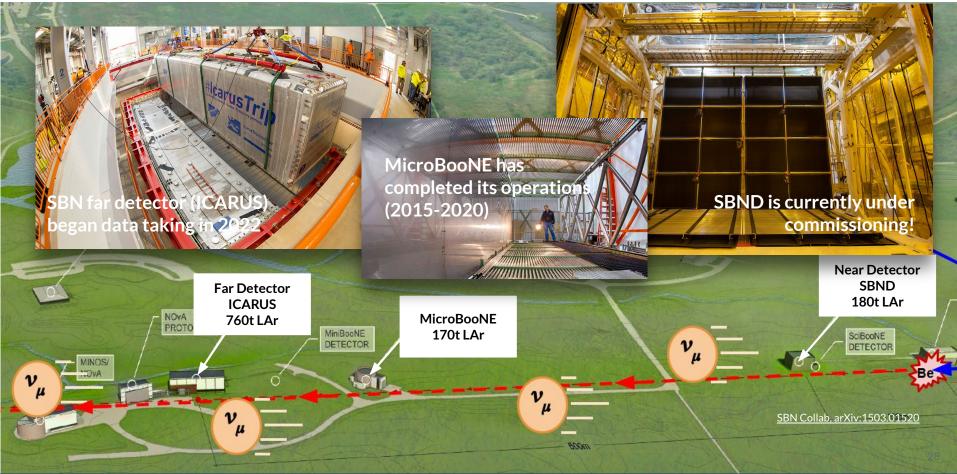
DETECTOR

8 GeV Protons

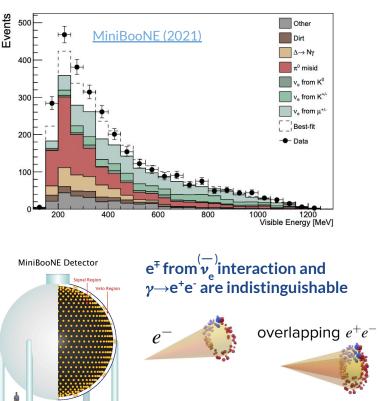
V

u

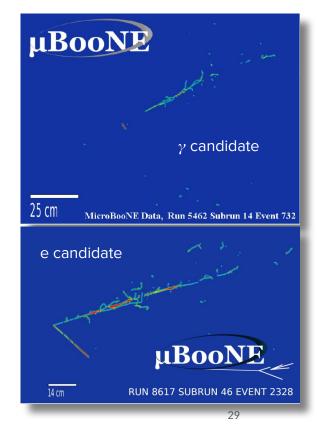
Near Detector SBND


180t LAr

SciBooNE

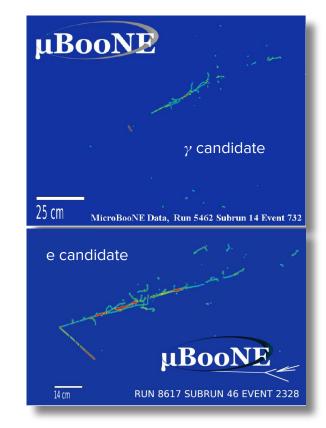

SBN Collab, arXiv:1503.01520

DETECTOR


Short-Baseline Neutrino (SBN) Program at Fermilab

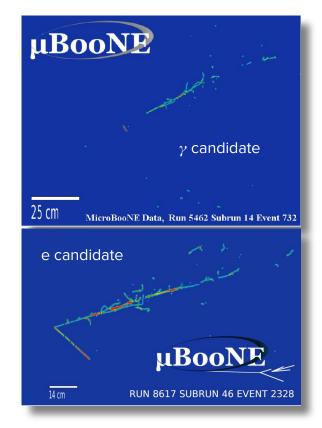
Key MiniBooNE challenge:

Overcome, thanks to LArTPC imaging detector technology!


Direct tests of the MiniBooNE anomaly so far, using half of the MicroBooNE data set:

"Conventional" (SM) photon background? Dominant SM source of single-photons: neutrino-induced neutral-current Delta baryon production followed by Delta radiative decay \rightarrow ruled out at >95% CL

Phys.Rev.Lett. 128 (2022) 111801


Energy-dependent enhancement of nue event rate? Three separate, independent analyses rule it out as the sole source of the MiniBooNE anomaly

Phys.Rev.Lett. 128 (2022) 24, 241801

Anticipated new results:

- Enhanced-sensitivity photon searches (with improved reconstruction and 2x increase in statistics)
- Searches for 3+1 oscillations using BNB and NuMI-off-axis neutrinos
- "Dark sector" physics searches

Dark Sector Searches with LArTPCs

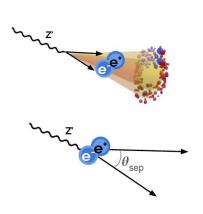
Category	Model	Cimentum		D.C.	
	wodel	Signature	LSND	MiniBooNE	References
	(3+1) oscillations	erscillations	1	1	Reviews and global fits [93 103, 105, 106]
Flavor transitions Secs. 3.1.1-3.1.3,	(3+1) w/ invisible sterile decay	os e la vi vi	1	1	[151 155]
3.1.5	(3+1) w/ sterile decay	CO Y	1	1	[159 162 270
Matter effects Secs. 3.1.4, 3.1.7	(3+1) w/ anomalous matter effects	$ $	1	~	[143, 147, 271-273]
	(3+1) w/ quasi-sterile neutrinos	$\begin{array}{c} {\rm e}^{-} \\ \mu \rightarrow \nu_{e} \ {\rm w} / \\ {\rm resonant} \ \nu_{s} \\ {\rm matter \ effects} \end{array}$	1	1	148
Flavor violation Sec. 3.1.6	Lepton-flavor-violating μ decays	$(e^{+\nu_{\alpha}\overline{\nu_{e}}})$	1	×	[174,175, 74
	neutrino-flavor- changing bremsstrahlung		/	1	275
Decays in flight Sec. 3.2.3	Transition magnetic mom., heavy ν decay	$\gamma \rightarrow \nu \gamma$	×	~	207
	Dark sector heavy neutrino decay	e e	×	1	208
Neutrino Scattering Secs. 3.2.1, 3.2.2	neutrino-induced upscattering		1	1	205 206 09–216
	neutrino dipole upscattering	(V) e	1	1	[40, 185, 187 188, 90, 93, 233, 276]
Dark Matter Scattering Sec. 3.2.4	dark particle-induced upscattering	(V) e	×	1	2171
	dark particle-induced inverse Primakoff	(7)	1	1	217

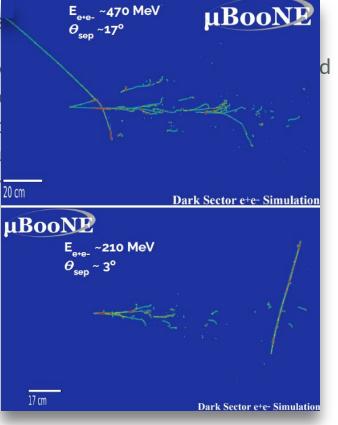
25+ dark-sector models in last 5 years

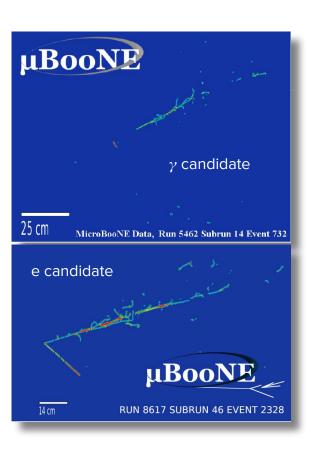
Incredibly rich and varied phenomenology containing

Electron signals

Photon signals


e+e- signals


Table modified from Snowmass <u>White Paper</u> on Light Sterile Neutrino Searches and Related Phenomenology


Image credit: Mark Ross-Lonergan

Anticipated new results

- Enhanced-sensitiv reconstruction and
- Searches for 3+1 of NuMI-off-axis neu
- "Dark sector" phy_{20m}

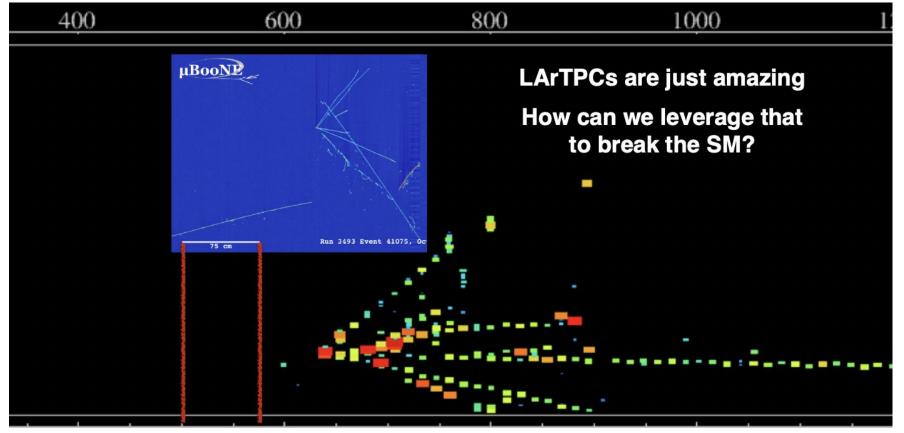


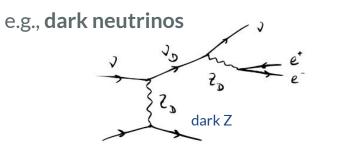
Image credit: Pedro Machado

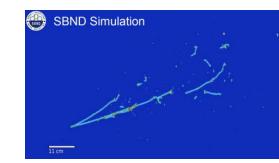
Prospects at SBND

SBND expects to record O(10M) neutrino interactions on argon in just 3 years of running, about 20x the statistics already collected by MicroBooNE!

First-ever measurements of yet-undetected SM neutrino scattering processes:

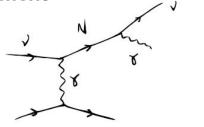
- Coherent single-photon production in neutrino-nucleus neutral current scattering
- Delta and higher-mass resonance production in neutrino scattering followed by radiative decays

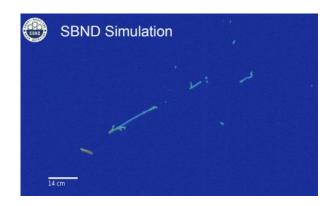

What's a discovery in particle physics


- Detecting for the first time a new fundamental process
- Discovering new particles (indirectly or directly)

S. Gori

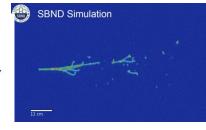
Prospects at SBND


High-sensitivity tests of MiniBooNE anomaly interpretations (SM and BSM models):



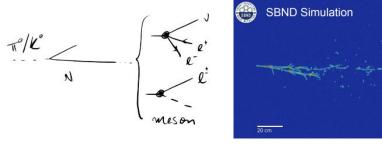
signature: e+epair with or without hadronic activity

e.g., transition magnetic moment

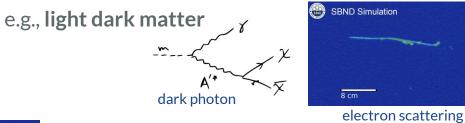


signature: photon shower with or without hadronic activity

Prospects at SBND


Broader tests of BSM scenarios:

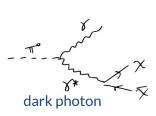
e.g., axion-like particles



high-energy e+e- or μ + μ -

e.g., heavy neutral leptons

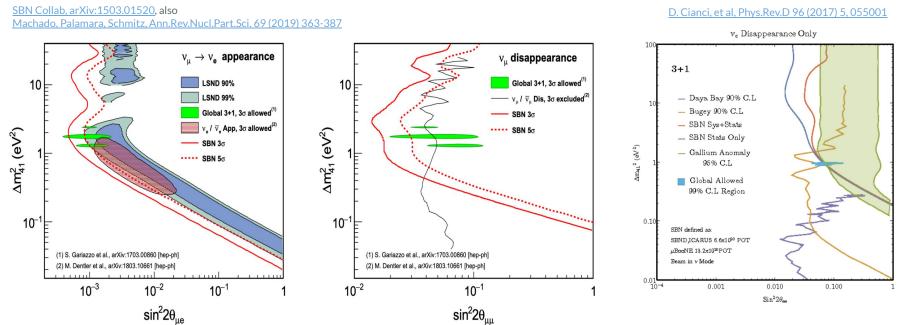
e+e-, μ + μ - or $\mu\pi$

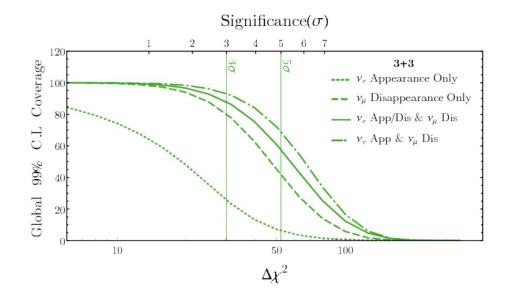


e.g., Higgs portal scalars

SBND Simulation

e+e- or μ + μ -, no hadronic activity


e.g., millicharged particles


SBN Prospects: "Vanilla" 3+N models

L-dependent search for v_e appearance, v_e disappearance, and v_μ disappearance (no evidence thus far with atmospheric neutrinos or past accelerator experiments), and also **neutral current rate** (combined all-active-flavor) disappearance (smoking-gun signature of sterile neutrino oscillations)

SBN Prospects: "Vanilla" 3+N models

SBN can exhaustively probe 3+1, 3+2, and 3+3 oscillations through inclusive, multi-channel searches:

E.g., can probe, with 5σ sensitivity, more than 50% of the globally-allowed (at 99% CL) 3+3 sterile neutrino oscillation parameter space

D. Cianci, et al, Phys.Rev.D 96 (2017) 5, 055001

Thanks to unprecedented resolution and statistics provided by MicroBooNE and SBN, we are **on the cusp of major physics breakthroughs**:

- unprecedented studies of neutrino interactions and neutrino properties
- addressing long-standing experimental anomalies
- probing new parameter space for BSM theories

A new generation of scientists is (re-)mastering this technology:

• adapting new technological advancements to tackle new instrumentation challenges

Thanks to unprecedented resolution and statistics provided by MicroBooNE and SBN, we are **on the cusp of major physics breakthroughs**:

unprec E.g., unprecedented computing challenges: addres probin Colliders: large number of interactions LArTPC's: large size of interaction to be recorded and analyzed to be recorded and analyzed A new gener Requires **innovation in hardware and software**, starting from low-level data processing, adapti as close to detector as possible, and calls for a **new computing paradigm** with much greater focus on heterogeneous computing resources (GPUs, FPGAs, mixed architectures) both at high-performance computing facilities and on-device. Leverages and benefits from advances in artificial intelligence for image processing.

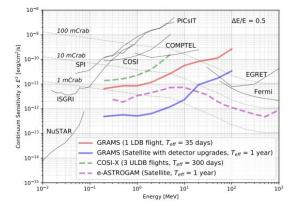
Thanks to unprecedented resolution and statistics provided by MicroBooNE and SBN, we are **on the cusp of major physics breakthroughs**:

- unprecedented studies of neutrino interactions and neutrino properties
- addressing long-standing experimental anomalies
- probing new parameter space for BSM theories

A new generation of scientists is (re-)mastering this technology:

- adapting new technological advancements to tackle new instrumentation challenges
- using this new technology as a platform for innovative ideas and long-term R&D that will have a broad impact on high energy physics and beyond...

Thanks to unprecedented resolution and statistics provided by MicroBooNE and SBN, we are **on the cusp of major physics breakthroughs**:


- unpreq
- nprege de stad atualiza a functulina internantiana and mantulina anomatica
- addres E.g., for astro-particle physics: Given sufficiently low energy threshold (keV), high
- probin resolution, and power-efficient charge readout design, technology can be flown for **MeV gamma-ray observations** and **indirect dark matter searches**
- A new gener

Gamma-Ray and AntiMatter Survey (GRAMS)

- adaptir has been funded by NASA for a technology-
- using t demonstration balloon flight have a in 2025-26.

T. Aramaki, G.K., et al., <u>Astropart.Phys. 114 (2020) 107-114</u>

Short-Baseline Neutrino Experiments: Beyond-Standard Model, and Beyond-Neutrinos!

In recent decades, motivated by short-baseline experimental neutrino anomalies that have survived decades of testing and remain compelling, pushing us to innovate in both theory and experiment to better probe the neutrino sector.

Community now fully embraces that lack of constraints on neutrino properties, and their weakly-interacting nature, render them a **uniquely sensitive tool** for probing the physics of a wide range of dark matter models and generic searches for low-scale new physics.

Accelerator-based, short-baseline neutrino experiments offer high-luminosity (neutrinos, photons, nuclear and meson decays) and very sensitive, large detectors:

Discovery-class facilities for neutrino science, BSM physics, and innovative R&D!