

Overview of Recent LHC Results

Jannicke Pearkes, University of Colorado, Boulder on behalf of the ATLAS, CMS and LHCb collaborations Aspen 2024

Papers since Aspen 2023:

More than 250 papers submitted by ATLAS, CMS and LHCb!

I won't try to summarize 250 papers in 25 minutes.

Instead, will highlight a small selection of these beautiful results.

Recent results for each experiment linked here: <u>ATLAS</u>, <u>CMS</u>, <u>LHCb</u>,

Image: Juan Aliga

LHC Schedule

Significant increases in total integrated luminosity, but only marginal increases in energy.

LHC Schedule

No large increases in the center of mass energy and no clear signs of new physics encourages more **meticulous** and **creative** approaches

Overview of Recent LHC Results

Results with the Full Run 2 dataset:

- Measurement of rare processes Observation of four tops
- Precision measurements R_K
- Searches for more complex and unusual signatures Dark showers
- New search techniques Anomaly detection searches

Small handful of Run 3 results:

- Measurements at 13.6 TeV & searches with new triggers - to be covered next year ③

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-07 02:15:53.337408 GMT Run / Event / LS: 322356 / 153159025 / 79

Rare Processes: Observation of four top quark production by the ATLAS and CMS Experiments

Four Top Production ATLAS: Eur. Phys. J. C 83 (2023) CMS: Phys. Lett. B 847 (2023)

- Heaviest SM signature explored at the LHC!
- Very rare process: σ(tttt)_{NLO+NLL} = 13.4^{+1.0}_{-1.8} fb [arXiv:2212.03259]

Enhanced production for BSM models with heavy scalar or pseudo-scalar particles

Sensitive to top Yukawa coupling

Four Top Production

High object multiplicity final state:

- 4 b-quarks leading to jets
- decay products of 4 W bosons

Same-sign and multilepton channels have highest sensitivities despite small branching fraction.

Main backgrounds in same-sign dilepton & multilepton channels: ttW, ttZ, ttH

 $\nu | q$

Initial Four Top Full Run 2 Results

LHCTopWG Summary Plots

ATLAS+CMS Preliminary $\sqrt{s} = 13 \text{ TeV}$ LHC*top*WG $\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb $\sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8}$ (scale+PDF) fb tot. stat. JHEP 02 (2018) 031 arXiv:2212.03259 NLO(QCD+EW) NLO(QCD+EW)+NLL' $\sigma_{t\bar{t}t\bar{t}} \pm tot. (\pm stat. \pm syst.)$ Obs. Sig. ATLAS, 1L/2LOS, 139 fb⁻¹ 26 ⁺¹⁷₋₁₅ (±8 ⁺¹⁵₋₁₃) fb JHEP 11 (2021) 118 ATLAS, comb., 139 fb⁻¹ 24_{-6}^{+7} (±4 $_{-4}^{+5}$) fb JHEP 11 (2021) 118 CMS, 1L/2LOS/all-had, 138 fb⁻¹ 36_{-11}^{+12} (±7 $_{-8}^{+10}$) fb PLB 844 (2023) 138076 CMS, comb., 138 fb⁻¹ 17±5 (±4 ±3) fb PLB 844 (2023) 138076

0

20

40

60

 $\sigma_{t\bar{t}t\bar{t}}$ [fb]

80

First iteration on full Run 2 dataset

Race to 5σ with same-sign di-lepton and multilepton channels

JANNICKE PEARKES

120

1.9 σ

4.7 σ

3.9 σ

4.0 σ

100

Four Top Production – Analysis Improvements

tītī

HF μ ttt

1600

H_T [GeV]

1800

ATLAS

- Data-driven ttW+jets background estimate
- GNN for signal from background separation 10% higher significance compared to prior BDT-based method
- DL1r b-tagging improves light/c-jet rejection
- Lowered p_T on lepton and jet selections

CMS

- Refined ttW / ttZ non-prompt control regions
- Improved multiclass BDTs for signal from background separation
- DeepJet b-tagging improved signal efficiency by 5-25%
- Improved lepton identification with tttt specific BDTs
- Lowered p_T on lepton and jet selections

Four Top Production - Results

Accumulation of many small improvements leads to large gains

LHCTopWG Summary Plots

JANNICKE PEARKES

More Rare Processes:

Tri-boson production: WZ γ observation at 6.3 σ (5.0 σ exp) ATLAS: Phys. Rev. Lett. 132 (2024) 021802 W $\gamma\gamma$ observation at 5.6 σ (5.6 σ exp) ATLAS: Phys. Lett. B 848 (2024) 138400 WW γ observation at 5.6 σ (4.7 σ exp) CMS: <u>CERN-EP-2023-203</u>

Higgs to Zγ: Evidence at 3.4σ (1.6σ exp) ATLAS+CMS: Phys. Rev. Lett. 132 (2024) 021803

VH(*CC*): limits at 14.4x SM CMS: Phys. Rev. Lett. 131 (2023) 061801

Observation of $\gamma\gamma \rightarrow \tau\tau$

CMS (pp) <u>CMS-PAS-SMP-23-005</u> ATLAS (PbPb) <u>Phys. Rev. Lett. 131 (2023) 15180</u> CMS (PbPb) <u>Phys. Rev. Lett. 131 (2023)</u>

CMS Preliminary 138 fb⁻¹ (13 TeV)

Hadron Spectroscopy

Many more results not highlighted here 12

Precision Measurements: R_K

What is R_K?

Probe of charged lepton flavour violation

New physics, such as leptoquarks could lead to imbalance in ratio of transitions producing a pair of muons vs. electrons

 $R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$

- Mounting evidence for lepton flavour violation in R_{κ} from 2014-2022
- 3.1 σ observed significance by LHCb in 2022

LHCb: <u>Nature Physics 18, (2022) 277-282</u> LHCb: <u>Phys. Rev. D 108 (2023) 032002</u> CMS: <u>CERN-EP-2023-297</u>

- Mounting evidence for lepton flavour violation in R_{K} from 2014-2022
- 3.1 σ observed significance by LHCb in 2022
- CMS creates innovative "B-Parking" trigger strategy to trigger on low p_T muons and follow-up
- Allowed for collection of 10¹⁰ B-hadron decays that would not have been captured otherwise during 2018

LHCb: <u>Nature Physics 18, (2022) 277-282</u> LHCb: <u>Phys. Rev. D 108 (2023) 032002</u> CMS: <u>CERN-EP-2023-297</u>

2024 CMS produces their first measurement of R_K

- Consistent with SM, much larger uncertainties than LHCb
- Limited by statistics in electron channel
- B-Parking trigger strategy has collected large dataset for other B-Physics and low mass searches
 e.g. Observation of J/ψ → μμμμ (CERN-EP-2024-058)

LHCb: <u>Nature Physics 18, (2022) 277-282</u> LHCb: <u>Phys. Rev. D 108 (2023) 032002</u> CMS: <u>CERN-EP-2023-297</u>

 $R_K \operatorname{low-} q^2$

(0.960	0.971	0.988	0.997	0.982	0.973	0.967	0.967	0.977	
DLL(e) > 7		±	±	±	±	±	±	±	±	
	0.097	0.099	0.102	0.102	0.100	0.099	0.099	0.099	0.102	
	0.961	0.964	0.969	0.983	0.973	0.981	0.979	0.961	0.985	
DLL(e) > 5	<u>±</u>	\pm	\pm	±	±	\pm	±	±	\pm	
	0.086	0.086	0.088	0.090	0.089	0.091	0.092	0.090	0.095	
	0.873	0.904	0.908	0.958	0.950	0.954	0.938	0.940	0.969	
DLL(e) > 2	<u>±</u>	±	±	±	±	\pm	±	±	±	
	0.073	0.078	0.079	0.087	0.086	0.087	0.086	0.087	0.093	
	> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60	
	ProbNN(e)									

- Tighter electron identification criteria led to uncovering previously underestimated peaking backgrounds
- New result is compatible with SM

Precision Measurements

Top mass

 $m_t = 172.52 \pm 0.14$ (stat) ± 0.30 (syst) GeV ATLAS+CMS: ATLAS-CONF-2023-066 / CMS-PAS-TOP-22-001/

W boson mass

ATLAS: <u>ATLAS-CONF-2023-004</u> LHCb: <u>JHEP 01 (2022) 036</u>

Z boson invisible width

CMS: Phys. Lett. B 842 (2023) 137563 ATLAS: <u>CERN-EP-2023-232</u>

To name a few!

Direct Searches for New Physics

Getting creative with unconventional signatures

Searches for BSM Physics

Incredible range of models, masses and lifetimes studied to date.

*Only a selection of the available mass limits on new states or phenomena is sh †Small-radius (large-radius) jets are denoted by the letter j (J).

ATL-PHYS-PUB-2023-008

CMS EXO Summary plots

Dark Showers

Searches for a QCD-like Dark Sector:

Image: <u>arxiv:2203.08824</u>

Dark Showers

Large number of new results out in the past year alone

ATLAS Dark Jets (2023): <u>arXiv:2311.03944</u>

CMS Emerging Jets (2024): <u>arXiv:2403.01556</u>

ATLAS Semi-visible jets (2024): Phys. Lett. B 848 (2024) 138324

CMS SUEPs (2024): arXiv:2403.05311

Dedicated triggers for Run 3 promise of more to come!

JANNICKE PEARKES

Anomaly Detection Searches with Unsupervised & Weakly Supervised Machine Learning

Doing analysis in an entirely new fashion

Anomaly Detection with with Unsupervised Machine Learning

Mostly SM training data

Common SM skier

Anomaly Detection ATLAS: Phys. Rev. D 108 (2023) 052009

Anomaly Detection ATLAS: Phys. Rev. Lett. 132 (2024) 081801

- Lepton triggered events
- Rapidity mass matrix used as input to autoencoder
- Highest local significances of 2.8 σ and 2.9 σ found for $m_{j\mu}$ = 1.2 and 4.8 TeV

Anomaly Detection

- Unsupervised (VAE-QR)
- Weakly supervised (CWoLa Hunting, TNT, CATHODE)
- Semi-supervised multi-signal priors (QUAK)
- Anomaly detection improves sensitivity of standard methods up to ~3-7x

CMS: CMS-PAS-EXO-23-026

Summary

- Today's talk covered a very small selection of the incredibly productive LHC program
- Recent LHC results have focused on extracting as much as possible from the Full Run 2 dataset
- We are taking more meticulous and creative approaches to analyzing our data than ever before
- The technologies we are developing today will allow us to learn more about the SM and new physics in the future

Thank you!

Aspen Snowmass

References

Four top production:

- ATLAS: Eur. Phys. J. C 83 (2023)
- CMS: Phys. Lett. B 847 (2023)
- LHCTopWG Summary Plots

R_K:

- LHCb: <u>Nature Physics 18, (2022) 277-282</u>
- LHCb: Phys. Rev. D 108 (2023) 032002
- CMS: <u>https://arxiv.org/abs/2401.07090</u>

Dark Showers:

- ATLAS: <u>arXiv:2311.03944</u>
- ATLAS: Phys. Lett. B 848 (2024) 138324
- CMS: arXiv:2403.01556
- CMS: <u>arXiv:2403.05311</u>

Anomaly detection:

ATLAS: Phys. Rev. Lett. 132 (2024) 081801

ATLAS: Phys. Rev. D 108 (2023) 052009

CMS: CMS-PAS-EXO-23-026

Some Early Run 3 Results:

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \ast \rightarrow 4I$ cross-sections ATLAS: Eur. Phys. J. C 84 (2024) 78

CMS Displaced Muons: CERN-EP-2024-025

 10^{-3} 10^{-2} 10^{-1} 1 10 10^{2} 10^{3} 10^{4}

10⁵ 10⁵ 10 cτ [cm]

tt cross-section measurement

 $\sqrt{s} = 13.6 \text{ TeV} 29 \text{ fb}^{-1}$

√s = 13 TeV, 140 fb⁻¹

vs = 8 TeV, 20.2 fb

 $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$

QCD scales only

12

14

√s [TeV]

10

√s = 5.02 TeV. 0.26 fb⁻

Rate of Submitted Papers

1267 collider data papers submitted as of 2024-03-18

Image: J. Allison

SM Cross Section Measurements

W-mass Measurement

Newest measurement:

m_w = 80360 ± 5(stat.) ± 15(syst.) MeV (consistent with the SM)

36

Higgs to $Z\gamma$ ATLAS+CMS Combination

First evidence of this decay process!

 μ_{sig} = 2.2 ± 0.6(stat.)^{+0.3} _{-0.2} (syst.) **3.4** σ SM compatibility: 1.9 σ

Uncertainty dominated by statistics.

Strong contender for Run 3 observation

Analysis Strategy

Input featu	ures	Nice complementarity		
VAE Constituents p_x, p_y, p_z	CWoLa m_{SD} τ_{21} τ_{32} τ_{43} n_{const} leptonic energy fraction sub-jets B tag score	TNT same as CWoLa	CATHODE m_{SD}^{j1} m_{SD}^{j2} m_{SD}^{j2} $-m_{SD}^{j2}$ τ_{41}^{j1} τ_{41}^{j2} + B tag scores of j1, j2 CATHODE-b	QUAK $\begin{split} \varrho &= m_{\rm SD}/\rho_{\rm T} \\ \tau_{21} \\ \tau_{32} \\ \tau_{43} \\ n_{\rm const} \\ \sqrt{\tau_{21}} / \tau_{1} \\ jet \ B \ tag \\ score \end{split}$
	targets individual j	targets events 30		

Quasi Anomalous Knowledge (QUAK)

- Hybrid approach between
 model-independent and standard search
- Idea: encode prior knowledge of how a signal could look
- Train density estimator (normalizing flow) on colorful mix of simulated signals
- Train additional normalizing flow on background **simulation**
- Construct 2D space, select events with high background loss and low signal loss

28