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Soft consensus in LHC experiments: know where the constraints 
are, but do not take them too seriously for simplified models

Anything up to  is permitted; above that, get 
overproduction of dark matter relative to cosmological observation

Ωh2 = 0.12

Reasoning: goal of simplified models is to understand 
complementarity between channels and experiments, and 
identify gaps; theory is often too simple to be taken at face 
value anyway

However, relic density useful for setting goal sensitivities. 

Could say a model is excluded once relic prediction reached
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DM at the LHC
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ATLAS & CMS can contribute at higher masses. Trigger poses a 
challenge. Simplified spin-1 limits translate fairly directly, but this is 
not currently a standard interpretation.

CMS

https://arxiv.org/abs/2203.07048
https://arxiv.org/abs/2203.07048


Higgs decays to dark matter

CMS-HIG-21-007

13

In Higgs portal models, the 
Higgs decays to DM, 
creating a MET signature

Model motivation from Arcadi, Djouadi, and Kado

https://cds.cern.ch/record/2851426
https://arxiv.org/pdf/2001.10750.pdf


Higgs decays to dark matter

CMS-HIG-21-007

13

In Higgs portal models, the 
Higgs decays to DM, 
creating a MET signature

Possible UV-complete SM 
extension with just one DM 
particle if DM is a scalar

Model motivation from Arcadi, Djouadi, and Kado

https://cds.cern.ch/record/2851426
https://arxiv.org/pdf/2001.10750.pdf


Higgs decays to dark matter

CMS-HIG-21-007

13

In Higgs portal models, the 
Higgs decays to DM, 
creating a MET signature

For vector DM, more complex 
scenario with dark Higgs can 
still be appropriately estimated 
via this EFT approach (ref.)

Possible UV-complete SM 
extension with just one DM 
particle if DM is a scalar

Model motivation from Arcadi, Djouadi, and Kado

https://cds.cern.ch/record/2851426
https://arxiv.org/pdf/2001.10750.pdf
https://arxiv.org/pdf/2001.10750.pdf


Higgs decays to dark matter

CMS-HIG-21-007

13

In Higgs portal models, the 
Higgs decays to DM, 
creating a MET signature

Current upper limits on 
 ~ 0.11 (ATLAS)BR(h → inv)

For vector DM, more complex 
scenario with dark Higgs can 
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extension with just one DM 
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good complementarity between LHC and direct detection reach
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DM at HL-LHC and future colliders
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Opportunities at future colliders: non-SUSY DM

20

Snowmass BSM report

Spin-1 vector mediator: monojet 
sensitivity to DM coupling

Higgs portal:  sensitivity 
compared to current DD

H → inv

https://arxiv.org/pdf/2209.13128.pdf
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Different signatures can favour 
forward (FASER-esque) vs off-
axis far detectors

Limited use at e+e- machines 
but useful at hadron & 
probably muon machines

Valuable when LLP signature 
is trigger limited

Dedicated LLP 
experiments

Missing energy/mass experiments 
not possible at EF machines

Visible decay searches are well 
suited and could be added to 
future colliders (examples 1, 2)

Could probably do a re-scattering 
experiment here but I’ve not seen 
it talked about

Beam dump 
experiments

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.076022
https://arxiv.org/abs/2206.13745
https://arxiv.org/pdf/2202.12302.pdf
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Mentioned earlier that we need to highlight complementary areas 
of strength between DD, ID, and future colliders

This will be key to building the field we want to see

Often easier said than 
done.

Show example I know best: LHC DMWG spin-1 simplified model

Must reduce 4-5 free parameters ( ) to 2mmed, mχ, gSM, gχ

DD limits can use EFT; 
EF searches require 
model assumptions. 
Reducing problem 
dimensions to 2D plane 
usually needs extra 
assumptions

Snowmass particle DM report

https://arxiv.org/pdf/2209.07426.pdf
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Implication: no constraint 
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A. Boveia, C. Doglioni, KP et al
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limits

Dijet limits

Points with strong 
collider limits have high 
mediator mass to DM 
mass ratio

https://arxiv.org/pdf/2206.03456.pdf


Same concept, 
different projection 
into two dimensions
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Same concept, 
different projection 
into two dimensions
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Monojet 
limits

Dijet limits
(This cutoff 
is artificial)

Now ratio between 
mediators is fixed and  
is absorbed into y axis

gq

Colliders have unique 
strengths in accessing 
heavy mediators

Direct detection has 
unique strengths in 
accessing small couplings

Must present both for 
complete picture



26

A few sketches from 
Snowmass dark matter 
complementarity report

arXiv:2210.01770

https://arxiv.org/pdf/2210.01770.pdf
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A few sketches from 
Snowmass dark matter 
complementarity report

arXiv:2210.01770

Wino & Higgsino DM 
candidate sensitivity vs 
mass for indirect and 
direct detection and 

future colliders

https://arxiv.org/pdf/2210.01770.pdf
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Dark matter searches at colliders are complicated, take many 
forms, and are still not fully explored

There remains plenty of non-excluded space for cosmologically 
motivated particle dark matter above the ~GeV scale

There are also areas of DM phase space that only colliders can 
probe, just as there are areas that only direct or indirect detection 
experiments can probe

Complementarity, DM discovery potential, and the potential to 
exclude values aligning with cosmological observations should be 
thoroughly understood and included in future collider proposals

We rely on theory community to help us guide this work
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Additional materials



References

• LHC simplified models (s-channel mediators) arXiv:1507.00966


• LHC 2HDM+a model: arXiv:1810.09420


• Notes on Higgs portal: arXiv:2001.10750, arXiv:1903.03616


• Snowmass BSM topical group report arXiv:2209.13128


• Snowmass particle dark matter topical group report arXiv:2209.07426


• Snowmass DM complementarity report: arXiv:2210.01770


• Spin-1 projection comparisons for HL-LHC and FCC arXiv:2206.03456


• European Strategy briefing document: cds link
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https://arxiv.org/pdf/1507.00966.pdf
https://arxiv.org/pdf/1810.09420.pdf
https://arxiv.org/pdf/2001.10750.pdf
https://arxiv.org/pdf/1903.03616.pdf
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https://arxiv.org/pdf/2209.07426.pdf
https://arxiv.org/pdf/2210.01770.pdf
https://arxiv.org/pdf/2206.03456.pdf
https://cds.cern.ch/record/2691414/files/Briefing_Book_Final.pdf
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Comparison between true dark photon model and LHC simplified Z’ 
mediator model, demonstrating good agreement above Z peak
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https://arxiv.org/pdf/2206.03456.pdf
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Current limits on visible dark photon decays, by experiment

Graham, Hearty, & Williams

https://arxiv.org/abs/2104.10280


2HDM+a model and parameter choice description

33

The model considered here is the 2HDM+a model suggested by the LHC DM Working 
Group, which is the simplest gauge-invariant and renormalizable ultraviolet completion of 
the simplified pseudoscalar model initially recommended by the LHC DM Forum, which only 
contained the DM candidate and the mediator. This model is a type-II two-Higgs-doublet 
(2HDM) model to which an additional pseudoscalar a and a fermionic DM candidate χ are 
added. After electroweak symmetry breaking, the 2HDM contains five Higgs bosons: a 
lighter CP-even boson, h, a heavier CP-even boson, 𝐻, a CP-odd boson, 𝐴, and two 
charged bosons, . While the phenomenology of the model would be determined by 14 
free parameters, some benchmark choices are made in order to match h with the observed 
SM Higgs boson, to ensure the stability of the Higgs potential, or to evade electroweak 
precision measurement constraints. In the end, the benchmarks are defined by five 
parameters: the mass of the heavy Higgs bosons, which are taken to be degenerate, 

; the mass of the pseudoscalar mediator, ; the mass of the DM particle, 
; the mixing angle  between the two CP-odd states  and ; and the ratio of the


vacuum expectation values of the two Higgs doublets, tan .


H±

mA = mH = mH± mA
mχ θ a A

β

ATLAS EXOT-2023-14

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2023-14/
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Shape of direct detection exclusions in 2HDM+a model, Ma vs 
mχ plane. Requires fixing of other three parameters

LHC Dark Matter Working Group

 limitsH → inv Direct detection limits Neutrino fog

https://arxiv.org/pdf/1810.09420.pdf


How spin-1 simplified model to DD plane 
conversion works
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For details, see this talk

3 variables1 variable

Fix two and the other one becomes the thing that changes as  
changes.

σSI

Implications and consequences can be very different, but can 
also be somewhat opaque when just looking at final 2D plot.

https://indico.fnal.gov/event/22303/contributions/245711/attachments/157673/206465/complementarity_simplified_models.pdf

