Precision measurements searching for UL DM and GWs

Alain Doyon and Sylvia Jeney

FUTURE OF PARTICLE PHYSICS

ASPEN, MARCH 25, 2024

Nancy Aggarwal University of California, Davis

TODAY'S MENU

SPIN-DEPENDENT FORCE SEARCH FOR AXIONS

ARIADNE GOAL

Only experiment to directly test for nuclear couplings mediated by QCD axion in the lab

Source	Coupling			
	Photons	Nucleons	Electrons	
Dark Matter (Cosmic) axions	ADMX, HAYSTAC, DM Radio, LC Circuit, ABRACADABRA MADMAX,Orpheus	CASPEr	QUAX	
Solar axions	CAST IAXO			
Lab-produced	Light-shining-thru- walls (ALPS, ALPS-II)	ARIADNE		

AXION-MEDIATED INTERACTIONS BETWEEN NUCLEONS

AXION-MEDIATED INTERACTIONS BETWEEN NUCLEONS

MONOPOLE-DIPOLE FORCES DUE TO AXION

$$U_{sp}(r) = \frac{\hbar^2 g_s^N g_p^N}{8 \pi m_N} \left(\frac{1}{r \lambda_a} + \frac{1}{r^2} \right) e^{-\frac{r}{\lambda_a}} (\hat{\sigma} \cdot \hat{r})$$

MONOPOLE-DIPOLE FORCES DUE TO AXION

$$U_{sp}(r) = \frac{\hbar^2 g_s^N g_p^N}{8 \pi m_N} \left(\frac{1}{r \lambda_a} + \frac{1}{r^2} \right) e^{-\frac{r}{\lambda_a}} (\hat{\sigma} \cdot \hat{r})$$
$$10^{-29} \left(\frac{10^9 \text{GeV}}{f_a} \right) < g_s^N < 10^{-21} \left(\frac{10^9 \text{GeV}}{f_a} \right) \qquad g_p^N < \frac{C_f m_N}{f_a} \approx 10^{-9} \left(\frac{m_N}{1 \text{ GeV}} \right) \left(\frac{10^9 \text{ GeV}}{f_a} \right)$$

Refs: 2010.03889, https://journals.aps.org/prd/abstract/10.1103/PhysRevD.30.130, https://www.science.org/doi/10.1126/sciadv.abm9928, 2006:12508, 1801.08127

6

MONOPOLE-DIPOLE FORCES DUE TO AXION

$$U_{sp}(r) = \frac{\hbar^2 g_s^N g_p^N}{8 \pi m_N} \left(\frac{1}{r \lambda_a} + \frac{1}{r^2} \right) e^{-\frac{r}{\lambda_a}} (\hat{\sigma} \cdot \hat{r})$$
$$10^{-29} \left(\frac{10^9 \text{GeV}}{f_a} \right) < g_s^N < 10^{-21} \left(\frac{10^9 \text{GeV}}{f_a} \right) \qquad g_p^N < \frac{C_f m_N}{f_a} \approx 10^{-9} \left(\frac{m_N}{1 \text{ GeV}} \right) \left(\frac{10^9 \text{ GeV}}{f_a} \right)$$

 $g_s^N g_p^N$ range predicted by various theoretical models $\sim 10^{-38} - 10^{-30}$, (depend on mass/ f_a)

6

Search for PQ axions $10^{-6} \text{ eV} < m_a < 10^{-3}$ eV probe into the PQ

axion parameter space with $\sim 10^8$ improvement over previous techniques

O'Hare & Vitagliano, PRD 102 115026 2021

ARIADNE EXPERIMENT CONCEPT

$$U_{sp}(r) = \frac{\hbar^2 g_s^N g_p^N}{8 \pi m_N} \left(\frac{1}{r \lambda_a} + \frac{1}{r^2} \right) e^{-\frac{r}{\lambda_a}} (\hat{\sigma} \cdot \hat{r})$$

- Spins in hyperpolarized Helium-3 gas
- Transverse modulation by rotating a wheel with gear shaped pattern
- NMR-like transition if modulation matches He Larmor frequency
- Axion field doesn't obey Maxwell's equations, SM fields shielded using a superconductor

$$\omega_L = 11 \, \omega_{\rm rot}$$

CUSTOM CRYO DESIGN FOR $B_{eff} \sim 10^{-21}T$

CUSTOM CRYO DESIGN FOR $B_{eff} \sim 10^{-21}T$

PARTS FINALLY DELIVERED AFTER MANY YEARS COVID DELAY!

PARTS FINALLY DELIVERED AFTER MANY YEARS COVID DELAY!

PARTS FINALLY DELIVERED AFTER MANY YEARS COVID DELAY!

PRECISION MAGNETOMETRY AT UC DAVIS

 large volume magnetically shielded room – undergoing characterization and renovation

ARIADNE ROTATION ASSEMBLY

BACKGROUND AND DATA ANALYSIS

- 1. Improved background estimate from impurities
 - PTMCMC
 - Include correlation with rotational speed measurement
- 2. Background from susceptibility and Barnett effect
- 3. Noise modeling, measurement, analysis
- 4. Signal analysis
 - Correlation of axion signal with rotation speed,
 - correlation between sample cells
 - Subtraction in SQUID gradiometer

OPTICAL LEVITATION FOR DARK MATTER SEARCHES

OPTICAL TRAPPING FOR GW DETECTION

OPTICAL TRAPPING

$$V(\vec{r}) = -\frac{1}{2} \alpha (\vec{r}) E^2(\vec{r})$$

GW DETECTOR USING OPTICAL TRAPS

$$\Delta L = \frac{h}{2}L, \qquad \Delta x_a = \Delta L, \qquad \Delta x_s = \frac{h}{2}x_s$$
$$\Delta x_{GW} = \Delta x_s - \Delta x_a = \frac{h}{2}(x_s - L), \text{ maximized at } x_s \to 0$$
$$F_{GW} = M\Omega_T^2 \Delta x_{GW} = M \Omega_T^2 \frac{L}{2} h_0 \cos \Omega_{GW} t$$

Arvanitaki and Geraci, PRL 110, 071105 (2013)

TRAPPING OF FLAT OBJECTS IN THE LAB...

TRAPPING OF NAYF HEXAGON PLATES

STATE OF THE ART IN OPTICAL TRAPPING

STAY TUNED...

- Miniature GW detector based on levitated nanoparticles to probe GWs in 10 kHz – 300 kHz band
- Limited by gas damping and photon recoil
- Proposed new design with 20 times improved sensitivity and theoretically verified feasibility
- Will set independent limits on BH superradiance and primordial black holes
- Further improvements can be achieved by xylophone configuration and/or increasing the mass

DM SEARCHES IN AUDIO-BAND GW DETECTORS

Andreus/Depositphotos

 (\cdot)

Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run	Search for Subsolar-Mass Ultra LIGO's First Observing Run	acompact Binaries in Advanced	
R. Abbott <i>et al.</i> (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration) Phys. Rev. D 105 , 063030 – Published 31 March 2022	B. P. Abbott <i>et al.</i> (LIGO Scientific Collaboration and Phys. Rev. Lett. 121 , 231103 – Published 7 Decemb	d Virgo Collaboration) er 2018	WHAT DOES
Search for ultralight bosons in Cygnus X-1 with Advanced LIGO	Searching for dark clu	Imps with gravitational-wave detectors	LIGO HAVE
Ling Sun, Richard Brito, and Maximiliano Isi Phys. Rev. D 101 , 063020 – Published 17 March 2020; Erratum Phys. Rev. D 102 , 089902 (2020)	Sebastian Baum, Michael A. Fedderl Phys. Rev. D 106 , 063015 – Publishe	ke, and Peter W. Graham ad 19 September 2022	TO SAY
Black hole superradiance signatures of ultralight vector	s Black hole mergers	and the QCD axion at Advanced LIG	
Masha Baryakhtar, Robert Lasenby, and Mae Teo Phys. Rev. D 96 , 035019 – Published 22 August 2017	Asimina Arvanitaki, Masha Barya Phys. Rev. D 95 , 043001 – Publis	khtar, Savas Dimopoulos, Sergei Dubovsky, and Robert Lasenb shed 8 February 2017	MATTER?
Axion dark matter search using arm cavity transmitte gravitational wave detectors	ed beams of Ultralight ve of gravitatio	ctor dark matter search with auxiliary leng nal wave detectors	yth channels
Koji Nagano, Hiromasa Nakatsuka, Soichiro Morisaki, Tomohiro Fujita, Yuta Michimura, Phys. Rev. D 104 , 062008 – Published 16 September 2021	and Ippei Obata Yuta Michimura, Ton Phys. Rev. D 102 , 10	nohiro Fujita, Soichiro Morisaki, Hiromasa Nakatsuka, and Ippei Obata 2001 – Published 2 November 2020	a
Laser interferometers as dark matter detector	s Constraints on pla	anetary and asteroid-mass primordial	black holes
Evan D. Hall, Rana X. Adhikari, Valery V. Frolov, Holger Müller, and Maxim Po	ospelov	JFAVILALIONAI-WAVE SEAFCINES	
Direct limits for scalar field dark matter from a	≥v. D 105 , 062008 – F	Published 28 March 2022	
gravitational-wave detector		Novel signatures of dark matter in la	aser-interferometric
Sander M. Vermeulen, Philip Relton, Hartmut Grote [™] , Vivien Raymond, Christoph Affeldt,	<u>Fabio Bergamin</u> ,	H. Grote and Y. V. Stadnik	
Gravitational wave constraints on planetary-mass prim	ordial black holes using L	IGO O3a data Constraints on Ultralight Sca Measurements from the LIG	alar Bosons within Black Hole Spin O-Virgo GWTC-2
Andrew L. Miller, Nancy Aggarwal, Sébastien Clesse, Federico De Lillo, Surabhi Sach	dev, Pia Astone, Cristiano Palomba, Orn	ella J. Piccinni, Lorenzo Pier Ken K. Y. Ng, Salvatore Vitale, Otto A. Hannuks Phys. Rev. Lett. 126 , 151102 – Published 14 April	sela, and Tjonnie G. F. Li il 2021
Axion Dark Matter Search with Interferometric Gravitational W	ave Searching for dark pho	ton dark matter in LIGO O1 data	
Koji Nagano, Tomohiro Fujita, Yuta Michimura, and Ippei Obata	<u>Huai-Ke Guo, Keith Riles</u> , <u>Feng-Wei Yang</u> ⊠	& <u>Yue Zhao</u>	
Phys. Rev. Lett. 123, 11301 – Published 13 September 2019	<u>Communications Physics</u> 2, Article number:	Soarching for Dark Photon Dark Matt	or with Gravitational Wavo
Advanced LIGO, LISA, and Cosmic Explorer as da	ark matter transducers	Detectors	
Evan Hall ¹ and Nancy Aggarwal ^{2,3}		Aaron Pierce, Keith Riles, and Yue Zhao	

Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run	Search for Subsolar-Mass Ultra LIGO's First Observing Run	acompact Binaries in Advanced	
R. Abbott <i>et al.</i> (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration) Phys. Rev. D 105 , 063030 – Published 31 March 2022	B. P. Abbott <i>et al.</i> (LIGO Scientific Collaboration and Phys. Rev. Lett. 121 , 231103 – Published 7 December	d Virgo Collaboration) er 2018	WHAT DOES
Search for ultralight bosons in Cygnus X-1 with Advanced LIGC) Searching for dark clu	mps with gravitational-wave detecto	Drs LIGO HAVE
Ling Sun, Richard Brito, and Maximiliano Isi Phys. Rev. D 101 , 063020 – Published 17 March 2020; Erratum Phys. Rev. D 102 , 089902 (2020)	Sebastian Baum, Michael A. Fedder Phys. Rev. D 106 , 063015 – Publishe	ke, and Peter W. Graham d 19 September 2022	TO SAY
Black hole superradiance signatures of ultralight vector	Black hole mergers	and the QCD axion at Advanced L	
Masha Baryakhtar, Robert Lasenby, and Mae Teo Phys. Rev. D 96 , 035019 – Published 22 August 2017	Asimina Arvanitaki, Masha Barya Phys. Rev. D 95 , 043001 – Publis	khtar, Savas Dimopoulos, Sergei Dubovsky, and Robert La hed 8 February 2017	asenby MATTER?
Axion dark matter search using arm cavity transmitte gravitational wave detectors	ed beams of Ultralight ve of gravitation	ctor dark matter search with auxiliary length of the second second second second second second second second se	ength channels
Koji Nagano, Hiromasa Nakatsuka, Soichiro Morisaki, Tomohiro Fujita, Yuta Michimura, Phys. Rev. D 104 , 062008 – Published 16 September 2021	and Ippei Obata Yuta Michimura, Ton Phys. Rev. D 102 , 10	nohiro Fujita, Soichiro Morisaki, Hiromasa Nakatsuka, and Ippei 2001 – Published 2 November 2020	Obata
Laser interferometers as dark matter detectors	s Constraints on pla	netary and asteroid-mass primord	lial black notes
Evan D. Hall, Rana X. Adhikari, Valery V. Frolov, Holger Müller, and Maxim Po	spelov	Wal Sébastien Clesse and Federico De Lillo	
Direct limits for scalar field dark matter from a	ev. D 105, 0020	which of 28 March 2022	
gravitational-wave detector		Novel signatures of dark matter i	in laser-interferometric
Sander M. Vermeulen, Philip Relton, Hartmut Grote [™] , Vivien Raymond, Christoph Affeldt,	<u>Fabio Bergamin</u> ,	H. Grote and Y. V. Stadnik	
Gravitational wave constraints on planetary-mass prim Andrew L. Miller, Nancy Aggarwal, Sébastien Clesse, Federico De Lillo, Surabhi Sach	ordial black holes using L dev, Pia Astone, Cristiano Palomba, Orne	IGO O3a data Constraints on Ultralight Measurements from the ella J. Piccinni, Lorenzo Pier Ken K. Y. Ng, Salvatore Vitale, Otto A. Ha	t Scalar Bosons within Black Hole Spin e LIGO-Virgo GWTC-2 annuksela, and Tjonnie G. F. Li
Axion Dark Matter Search with Interferometric Gravitational Wa Detectors	ave Searching for dark pho	Phys. Rev. Lett. 126 , 151102 – Published ton dark matter in LIGO O1 data	14 April 2021
Koji Nagano, Tomohiro Fujita, Yuta Michimura, and Ippol Obeta Phys. Rev. Lett. 123 , 11100 (Capitalian 13 September 2019)	Communications Physics 2, Article number:	155 (2019) Cite this article	
Advanced LIGO, LISA, and Cosmic Explorer as da	ark matter transfucers	Searching for Dark Photon Dark N Detectors	latter with Gravitational-Wave
Evan Hall ¹ and Nancy Aggarwal ^{2, 3}		Aaron Pierce, Keith Riles, and Yue Zhao	

CBC Searches

CBC Searches

INSPIRAL GWS REFRESHER

$$h_0 = \frac{4}{d} \left(\frac{G \mathcal{M}}{c^2} \right)^{5/3} \left(\frac{\pi f_{GW}}{c} \right)^{2/3}$$

$$\dot{f}_{GW} = \frac{95}{5} \pi^{8/3} \left(\frac{G \mathcal{M}}{c^2}\right)^{5/3} f_{GW}^{11/3}$$

• Low mass =

- Low strain
- Higher merger frequency
- Slower frequency evolution

INSPIRAL GWS REFRESHER

$$h_0 = \frac{4}{d} \left(\frac{G \mathcal{M}}{c^2} \right)^{5/3} \left(\frac{\pi f_{GW}}{c} \right)^{2/3}$$

$$\dot{f}_{GW} = \frac{95}{5} \pi^{8/3} \left(\frac{G \mathcal{M}}{c^2}\right)^{5/3} f_{GW}^{11/3}$$

• Low mass =

- Low strain
- Higher merger frequency
- Slower frequency evolution
- Long signal duration

${\sf Monochromatic}\ {\sf GW}$

Monochromatic GW $\dot{f} < 10^9 \, {\rm Hz/s}$

 $\begin{aligned} f_{GW}(t) \\ &= f_{GW}(t_0) + \dot{f}(t-t_0) \end{aligned}$

Monochromatic GW $\dot{f} < 10^9 \text{ Hz/s}$ $f_{GW}(t)$ $= f_{GW}(t_0) + \dot{f}(t - t_0)$

GW Constraints ON Asteroid mass PBHs

 $m_1 = 2.5 M_{\odot}$

Miller, A., <u>Aggarwal, N.</u>, A. et al. Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational wave searches. PRD, 2022

NEW ANALYSIS TECHNIQUES (GENERALIZED FREQUENY HOUGH TRANSFORM) TO CONSTRAIN INTERMEDIATE REGION

Miller, A., Aggarwal, N., *et al.* GW constraints on planetary mass primordial black holes using LIGO O3a data. Arxiv 2402.19468 Chirp Mass $\mathcal{M}(M_{\odot})$

NEW ANALYSIS TECHNIQUES (GENERALIZED FREQUENY HOUGH TRANSFORM) TO CONSTRAIN INTERMEDIATE REGION

ULTRALIGHT DILATONIC DARK MATTER DIRECT COUPLING WITH LIGO REFERENCE CAVITIES

FIG. 1: Advanced LIGO frequency stabilization. Noise in the solid cavity, including noise from any dark matter signal that changes the length of the solid cavity, will appear on the control signal applied to the acousto-optic modulator (AOM). The various noise contributions to this control signal are given in Eq. (4).

ULTRALIGHT DILATONIC DARK MATTER DIRECT COUPLING WITH LIGO REFERENCE CAVITIES

FIG. 1: Advanced LIGO frequency stabilization. Noise in the solid cavity, including noise from any dark matter signal that changes the length of the solid cavity, will appear on the control signal applied to the acousto-optic modulator (AOM). The various noise contributions to this control signal are given in Eq. (4).

ULTRALIGHT DILATONIC DARK MATTER DIRECT COUPLING WITH LIGO REFERENCE CAVITIES

FIG. 1: Advanced LIGO frequency stabilization. Noise in the solid cavity, including noise from any dark matter signal that changes the length of the solid cavity, will appear on the control signal applied to the acousto-optic modulator (AOM). The various noise contributions to this control signal are given in Eq. (4).

ULTRALIGHT DILATONIC DARK MATTER DIRECT COUPLING WITH LIGO REFERENCE CAVIT Mass $[eV/c^2]$

ULTRA-HIGH FREQUENCY GRAVITATIONAL WAVE INITIATIVE

GWS INFORM ASTROPHYSICS AND COSMOLOGY Masses in the Stellar Graveyard

Updated 2020-09-02 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Updated 2020-09-02 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GWS INFORM ASTROPHYSICS AND COSMOLOGY

<u>Biggish bang: artist's impression of a</u> <u>neutron-star merger (Courtesy: NASA)</u>

FIG. 1: Left: time evolution of the tensor speed excess α_T as a function of redshift for 300 different realizations of viable quintic Galileon cosmologies. Only quintic fine tuned cases (colored) predict $\alpha_T(z=0) \approx 0$. Right: 1, 2 and 3σ confidence regions of the parameter space w.r.t. Planck+BAO for cubic (red), quartic (blue) and quintic (green) Galileons, projected on the $\alpha_T(z=0), \alpha_M(z=0)$ plane. Gray diagonal lines indicate the region disfavored by CMB-LSS cross correlation, measuring the ISW effect (see [33] for details). Models with $\alpha_T < -1$ (gray filled region) have unstable tensor modes.

300 different theories ruled out by a SINGLE measurement!!!

GWS ABOVE THE AUDIO BAND?

http://www.ctc.cam.ac.uk/activities/UHF-GW.php

Members: Nancy Aggarwal, Mike Cruise, Valerie Domcke, Francesco Muia, Fernando Quevedo, Andreas Ringwald, Jessica Stenlechner, Sebastien Steinlechner

NUMEROUS INTERESTING SOURCES & PROMISING TECHS!!!

Aggarwal, N., Aguiar, O.D., Bauswein, A. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. *Living Rev Relativ* **24**, 4 (2021).

NUMEROUS INTERESTING SOURCES & PROMISING TECHS!!!

THANKS!

Collaborators

- Northwestern University: Andrew Geraci, Vicky Kalogera, Shane Larson, George Winstone, Aaron Wang, Shelby Klomp, Chloe Lohmeyer, Lucas Stanley, many others
- Indiana University: Mike Snow and many others
- PTB: Jens Voigt, Wolfgang Killian, Sylvia Guttenberg
- Stanford University: Aharon Kapitulnik, Alan Fang
- UIUC: Josh Long
- Caltech: Andrew Laeuger
- MIT: Nergis Mavalvala, Evan Hall, Swadha Pandey, Bobby Lanza
- LSU: Thomas Corbitt, Jon Cripe Torrey Cullen
- Nikhef: Andrew Miller
- Georgia Tech: Surabhi Sachdev
- CAPP: Yannis Semeridis, Yun Shin