Field Testing at CERN's DC Lab

Victoria M. Bjelland, Sergio Calatroni, Catarina Serafirm, Walter Wuensch

11/03/2024

Table of Content

- Introduction
- LES Design
- Conditioning Testing and Automatic Alogrithm
- Field emission measurements
- Light emission during field emission

- LES = Large Electrode System
- RF Structures experience
 breakdowns
- Breakdowns cause
 - Loss of beam
 - Surface damage
- Difficult to analyse because
 - Non-uniform field
 - Time varying field
 - Expensive

Xbox 2 test stand. Image provided by Lee Milar.

- LES = Large Electrode System
- RF Structures experiences
 breakdowns
- Breakdowns causes
 - Surface damage
 - Loss of beam
- Difficult to analyse because:
 - Non-uniform field
 - Time varying field
 - Expensive

a)Damage caused by a breakdown inside an RF structure [2]. b) Uneven electric field distribution inside RF Cavity. Several breakdowns are marked on the side of the strucutre [3]

Breakdown locations

- The LES/DC Spark System is
 - Cheaper
 - Faster
 - Simpler
 - Safer
 - Profilable Field Distribution

• Better material understanding!

Drawing of the Large Electrode System. a) Isometric view. b) Plane cut view.

- The LES/DC Spark System is
 - Cheaper
 - Faster
 - Simpler
 - Safer
 - Profilable Field Distribution

• Better material understanding!

Image of Uppsalas Cryogenic LES [6].

Introduction: Previous work

The LES has been involved in several large scale project trough the years, such as:

- High field exposure for CLIC material investigation
- Hydrogen blistering effect on conditioning related to RFQ structures.

It has also been involved in smaller scale projects to better understand the origin of breakdowns:

- Breakdown light emission spectras
- Light emission during field emission
- Experimental data for investigating fluctuation theories.

a) Image of CLIC accerlator cavity structure [5]. b) Inside an RFQ structure [6]. c) Light emission spectra from ridged electrodes [7].

Study of different materials exposed to low energy Hirradiation and its effects on high voltage breakdown resistance

During the operation of LINAC4, up to 25% of the source beam current is routinely lost in the Radio Frequency Quadrupole (RFQ) at an energy between 0.045 and 3 MeV. These losses can cause surface modifications which in turn may lead. In areas of high electric field, to an

Ξ

() 10:30 AM - 11:00 AM

Presenter Catarina Serafim

Large Electrode System: Chamber and Setup

Large Electrode System: Conditioning

To condition: Apply $1\mu s$ -1ms DC pulses to the electrodes

Can see breakdown in form of:

- High current
- Pressure Increase
- Light.

Voltage [V]

Large Electrode System: Breakdown Detection

To condition:

Apply $1\mu s$ -1ms DC pulses to electrodes

Can see breakdown in form of:

- High current
- Pressure Increase
- Light

Large Electrode System: Breakdown Localization

- Uniquely identifiable breakdowns.
 - Position
 - Time
 - Applied Field
- Position on CCD
 position on surface

Breakdown identification setup. Two CCDs look inside the chamber and captures breakdown light [7].

Large Electrode System: Electrodes and Spacers

- Anode and cathode electrodes
- Seperated by well-machined spacers
- Internally insulated from chamber
- Only high E-field at center of the electrodes

Conditioning Testing and Automatic Algorithm

Maximum Fields of Materials

 Conditioning controlled by breakdown rate

- Conditioning controlled by user
- Stays on the same field for several thousands of pulses

Maximum Fields of Materials

- Many materials have been tested and characterized at CERN
- Pink = Stable Field
- Green =Maximum field

Maximum Fields of Materials

- Many materials have been tested and characterized at CERN
- Pink = Stable Field
- Green =Maximum field
- Irradiated materials have also been tested

D 🖸 NTN

MeVArc

CERN

Ξ

Study of different materials exposed to low energy H-

irradiation and its effects

Field Emission

Field Emission Test Stand

- Imagine a simple circuit with
 - Capacitor
 - Load resistor
 - Variable measuring resistor
 - Power source.

Field Emission Test Stand

- Imagine a simple circuit with
 - Capacitor
 - Load resistor
 - Variable measuring resistor
 - Power source.
- Measure the current and fit it against the Fowler-Nordheim Equation

$$J = A \frac{\beta^2 E^2}{\phi} \exp(-\frac{\beta \phi^{\frac{3}{2}}}{\beta E})$$

Field Emission of Materials

- Field emission current will have an exponential correlation with applied voltage.
- Dashes lines = maximum field reached during conditioning
- Higher field reached
 Lower current emitted

Light Spectroscopy

Light emission during field emission

- Light emission is oberved during field emission.
- Spectra depends on the material
- In the optical-IR spectra

- Origin of emission:
 - Optical transition radiation?
 - Cathodeluminescence?
 - Plasmonic radiation?

Thank you for listening ③

Additively Manufactured Electrodes

Additively manufacturing verus Milling

• Milling

- Cutting out material from a chunk
- Typical in manufacturing
- Limits complexity
- Additively Manufacturing
 - Melt metal spheres using lasers
 - Causes very rough structures

Mevarc Contraction of the second seco

Additively Manufactured Cathode

- Additively manufactured cathode was tested at CERN.
- Unlike the usual diamond machined surface.

Additively Manufactured Cathode

- Reaches high electric fields
- DISLCAIMER: More thorough gap estimations to come.

Figure: Taken from [2]

Future Plans

Nichrome Electrode Testing

- The fabrication of a Nichrome covered Cu Electrode have been completed.
- Will reveal the field holding capabilities of this HOM absorption material for the CCC

Laser Ablation Nanopattern

- Laser applied to surface causes surface plasmons
 - -> Causes periodic patterns
 - ->Causes nanospheres as a biproduct
- Investigation of plasmonic structures in high field application and its reaction to conditioning

Field Emitter Localization

 By upgrading the already establish breakdown localization system, we hope to localize poential field emitters ocurring during conditioning/field emission

Thank you for listening

Light emission during field emission

• Spectra can change due to electrode geometry.

11/03/2024

Nichrome Electrode Testing [hoder slide in case we start testing this week]

- The fabrication of a Nichrome covered Cu Electrode have been completed.
- Will reveal the field holding capabilities of this HOM absorption material for the CCC

- Many materials have been tested and characterized at CERN
- Pink = Stable Field
- Green =Maximum field

Plasma ignition during breakdown

- Breakdown spectra during breakdown
- Identifyable ions from materials
- Cu I, Cu II, Cu III

• Measure time intensity at specific wavelengths

CERN

36