

In-situ observation of field-induced nano-protrusion growth on a carbon-coated tungsten nanotip

Yimeng Li¹, Andreas Kyritsakis^{*2,3}, Roni Koitermaa^{2,3},

Veronika Zadin², Guodong Meng¹

1)State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China

2) Institute of Technology, University of Tartu, Nooruse 1, 51010 Tartu, Estonia

3) Department of physics, University of Helsinki, PO box 43, FI-00014 Helsinki, Finland

Vacuum breakdown stages

Andreas Kyritsakis, MEVARC 2024

Vacuum breakdown stages

Andreas Kyritsakis, MeVArc 2024

Crucial stages for VBD mitigation

Protrusion formation: Mitigate by material choice, conditioning, vacuum quality, etc

(RF design of structures)

Stage 1: tip growth?

- surface diffusion under field (native metal)
- surface diffusion under field (contaminants C)
- Field-induced deposition of contaminants (mainly C)
- Dislocation activity causing plastic deformation driven outgrowths
- Field-induced plastic deformation of contaminant layer
- Macroparticles (AKA "Cranberg scenario")
- Tips are already there (natural roughness) and we can't get rid of them
- ... more (?)

Experimental setup

TER

"jumpy" I-V Field emission curves

Andreas Kyritsakis, MeVArc 2024

ER

Why does I-V jump?

• Hypothesis: field-induced a-C nanoprotrusion growth

• Same mechanism causing VBD??

Andreas Kyritsakis, MeVArc 2024

Simulation of I-V curves

Gap distance (nm)	$eta_{ ext{tip}}$	$eta_{ ext{NP}}$	A _{tip} (nm ²)	A _{NP} (nm ²)
$d_1(50 \text{nm})$	1.975	2.6	3743	237
<i>d</i> ₂ (37nm)	1.67	2.1	2980	315
<i>d</i> ₃ (41.5nm)	1.77	2.26	3305	266
$d_4(17nm)$		1.58		159

Andreas Kyritsakis, MeVArc 2024

MATTER

Burning the C out

ļ

A

45 50

55 60

40

Andreas Kyritsakis, MeVArc 2024

Observing NP growth real-time

ER

Considering plastic deformation

- Elastoplastic FEM model
- Properties fitted to nanoindendation results of a-C
- Plastic deformations not observed at relevant fields
- Plastic deformation cannot explain the observed growth
- Remaining possible hypotheses:"
 - □ Field-induced diffusion
 - □ Field-induced deposition
- We cannot tell yet which one is responsible

Considering deposition

- In a clean W tip emitting under the same conditions, no growth was observed
- The emission and field are enough to change the shape of the W tip (faceting), but no
 deposition

Andreas Kyritsakis, MEVArc 2024

Old experiments at UT

Andreas Kyritsakis, MEVArc 2024

MATTER

Conclusions

- Nano-protrusion (NP) growth on the a-C coating layer of a W nanotip during field emission
- We attribute it to field-induced biased surface diffusion of the a-C surface atoms, after excluding field-induced plastic deformation and deposition.
- This offers a plausible mechanism of the appearance of field enhancing features necessary to initiate electrical breakdown in vacuum.