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CARIE: Cathodes And Rf Interactions in Extremes

A new three-year project was funded at LANL to 

demonstrate operation of high-quantum-efficiency 

cathodes in a high-gradient RF injector.

• Project builds upon LANL’s expertise in high-

gradient C-band and high-QE photocathodes.

• The proposed heterostructured cathode will include 

multiple layers to ensure atomic flatness of the 

surface, high QE, and the ability to withstand high 

electric fields with no breakdown.

• Target beam parameters: 250 pC, 0.1 μm*rad,   

B5D = 1016 A/m2.

• The project started in October of 2022.
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Theory efforts: thrusts and the team

• New photoemission model for thin-film semiconductor cathodes (D. Dimitrov)

• DFT modeling of cathode materials (Cs2Te and Cs/alkaline antimonides) (G. Wang)

− Bulk properties (structure, optical, electronic, photon, and atomic potential)

− Surface properties (work function, electronic properties)

• Monte-Carlo (MC) high-field transport modeling (C. Huang, D. Dimitrov)

• Molecular Dynamics (MD) models for cathode materials (S. Bagchi, D. Perez)

− Beyond standard charge equilibration approach for high-field operation

− Data-driven parametrization of interatomic potentials

• Meso-scale surface breakdown modeling (S. Bagchi, R. Shinohara - MSU)

• Integration of the nano/meso-scale models
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Overview of our models and the integrated modeling 

approach for semiconductor cathodes
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Overview of our models and the integrated modeling 

approach for semiconductor cathodes
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Breakdown Under High Field Environment

• Triggered from primary emission site
Wang JW, Loew GA (1997)
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Mesoscale Surface Diffusion Model 
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Mesoscale surface diffusion model

https://arxiv.org/pdf/2311.06624.pdf
https://arxiv.org/abs/2311.02519

https://arxiv.org/pdf/2311.06624.pdf
https://arxiv.org/abs/2311.02519
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Mesoscale surface diffusion model

https://arxiv.org/pdf/2311.06624.pdf
https://arxiv.org/abs/2311.02519

https://arxiv.org/pdf/2311.06624.pdf
https://arxiv.org/abs/2311.02519
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Semiconductor Breakdown: Field Emission

• Field Emission
− Source → Current Density

▪ Joule Heating

▪ Nottingham Effect
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Field Emission Current & Heating 

• Field Emission Calculated through Fowler-Nordheim equation

− 𝐽𝐹𝑁 = 1.54 ∗ 106 ∗ 104.53𝜙
−0.5

𝐸𝑙𝑜𝑐𝑎𝑙
2𝐸𝑥𝑝(

−6.53∗109∗𝜙1.5

𝐸𝑙𝑜𝑐𝑎𝑙
)

• Joule heating:

−
𝜕𝑇

𝜕𝑡
= 𝜌𝑱𝒃𝒖𝒍𝒌

𝟐

• Nottingham Heating:

− ∇𝑇 ⋅ 𝑛 =
𝑱𝑭𝑵Δ𝑈𝑒

𝑞𝑒𝜅

𝜅∇ ⋅ ∇𝑇 = 𝜌𝐽2

𝑇 = 300 K at 𝝏𝜴𝑪

∇T =
𝐽𝐹𝑁 ∆𝑈𝑒

𝑞𝑒𝜅
at 𝝏𝜴𝑽
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• Current-density Saturation in 

semiconductor

• Strong Deviation from classical FN 

equation in high-field regime

− 1.54 ∗ 106 ∗ 104.53𝜙
−0.5

𝑬𝒍𝒐𝒄𝒂𝒍
𝟐𝐸𝑥𝑝(−

6.53∗109∗𝜙1.5

𝑬𝒍𝒐𝒄𝒂𝒍
)

− FN equation predicts that current increases 
exponentially with surface field

Deviation from FN equation for 

semiconductor

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Un-physical results with FN equation

• Temperature Rise per Applied Field for Joule Heating: 

− 100MV/m: ~0°𝐾

− 125MV/m ~0 °𝐾

− 150MV/m: ~12 °𝑲

− 175MV/m: ~14000 °𝑲

• Temperature Rise per Applied Field for Nottingham Heating : 

− 50MV/m: ~0°𝐾

− 55MV/m ~1 °𝐾

− 60MV/m: ~180 °𝑲

− 65MV/m: ~16000 °𝑲

Unrealistic 
Temperature Spike
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Stratton-Baskin-Lvov-Fursey Formalism, Oksana Chubenko

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism, Oksana Chubenko

• Low-field Regime

− Limited by tunneling probability

− → Act metal like (follows FN)

• High-field Regime (saturation)

− Limited by electron supply in the 
space-charge (band-bending) region

• Formalism takes into account the 

band-bending

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism, Oksana Chubenko

• Low-field Regime

− Limited by tunneling probability

− → Act metal like (follows FN)

• High-field Regime (saturation)

− Limited by electron supply in the 
space-charge (band-bending) region

• Formalism takes into account the 

band-bending

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism

• Low-field Regime

− Limited by tunneling probability

− → Act metal like (follows FN)

• High-field Regime (saturation)

− Limited by electron supply in the 
space-charge (band-bending) region

• Formalism takes into account the 

band-bending

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism

• Low-field Regime

− Limited by tunneling probability

− → Act metal like (follows FN)

• High-field Regime (saturation)

− Limited by electron supply in the 
space-charge (band-bending) region

• Formalism takes into account the 

band-bending

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism

• Low-field Regime

− Limited by tunneling probability

− → Act metal like (follows FN)

• High-field Regime (saturation)

− Limited by electron supply in the 
space-charge (band-bending) region

• Formalism takes into account the 

band-bending

Journal of Applied Physics 125, 205303 (2019); https://doi.org/10.1063/1.5085679

https://doi.org/10.1063/1.5085679
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Stratton-Baskin-Lvov-Fursey Formalism

• Find the simultaneous solution of the 

Poisson equation and Stratton’s equation

• Oksana Chubenko studied (N)UNCD 

3/6/202423
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Poisson Equation

• Solve

−
𝑑2𝑉

𝑑𝑥2
= −

𝜌

𝜅𝜖0
, 𝜌 = −𝑞(𝑛 − 𝑝 + 𝑁𝑎

− − 𝑁𝑑
+)

Concentration 
Densities
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Stratton’s Equation

•

•

Parameters Expression

𝐴1 4𝜋𝑚0𝑞 𝑘𝐵𝑇
2/ℎ3

𝐵1 8𝜋 2𝑚0/(3𝑞ℎ)

𝐶1 4𝜋 2𝑚0/(𝑞ℎ)

𝐴2 𝑞3/(8𝜋ℎ)

𝐵2 4𝜋 2𝑚0𝑘𝐵𝑇/(𝑞ℎ)
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Current vs Field: Current Saturation
A/m^2
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Current vs Field: Current Saturation
A/m^2

Current Saturation
≈1e6 A/m2
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Semiconductor vacuum 
boundary

𝜅∇ ⋅ ∇𝑇 = 𝜌𝐽2

Copper semiconductor 
boundary: 𝑇 = 300 K on 𝝏𝜴𝑪

Simple heating test with the solved current

• 50nm thin coat

• Solving for Stationary Heat Equation

− 𝜅∇ ⋅ ∇𝑇 = 𝑓

− Joule Heating: 

▪ 𝑓 = 𝜌𝐽𝑏𝑢𝑙𝑘
2

− Nottingham Heating: 

▪ ∇𝑇 ⋅ 𝑛 =
𝐽𝑏𝑢𝑙𝑘Δ𝑈𝑒

𝑞𝑒𝜅

▪ 𝑓 = ∇ ⋅ (𝜅Δ𝑇)
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Heating: max 𝚫𝐓

• Joule Heating 𝚫𝑻: 𝟎. 𝟑𝟐 K

• N𝐨𝐭𝐭𝐢𝐧𝐠𝐡𝐚𝐦 𝐄𝐟𝐟𝐞𝐜𝐭 𝚫𝑻: 𝟎. 𝟒𝟕 K
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Conclusion

• Current Saturation

• Insufficient current for meaningful heating to take 

place

− Max Δ𝑇 of 0.8 K

• Thermal Runaway will (likely) to not take place

3/6/202431
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Moving Forward

3/6/202432
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Pulsed Heating

• Without proper cooling temperature rise of ~100 K is expected 

Lisa Laurent https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.041001

David Pritzkau https://www.slac.stanford.edu/grp/arb/tn/arbvol3/ARDB271.pdf

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.041001
https://www.slac.stanford.edu/grp/arb/tn/arbvol3/ARDB271.pdf
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Pulsed Heating

3/6/202434

Copper

Cs2Te

Field Emission

Pulsed Heating
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Assuming Double Triangle Energy Barrier

• Conduction-band near in the thin film follows 

the slope –eFvacuum

• fermi level follows the slope –eFdiel

• linear relationship between Ec(x) and Ef(x) in 

the thin film
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Simulation setup

with copper layer

• 50 nm layer width

• Electrical Resistivity =

− Cs2Te: 31 Ω ⋅ 𝑚

− Copper: 1.68e-8 Ω ⋅ 𝑚

• Thermal Conductivity =

− Cs2Te: 0.12 
𝑊⋅𝑚

K

− Copper: 386 
𝑊⋅𝑚

K

• 1e6 A/m^2 current density flowing 

through Cs2Te

Copper

Cs2Te
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With Cs2te on top of copper layer

• Result is (basically) equivalent to boundary 

condition case ↓
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Charge Density near surface

• 𝑦(𝑥) =
𝐸𝐹 𝑥 −𝐸𝐶(𝑥)

𝑘∗𝑇/𝑞

• Linear relation with x vs y

• Can calculate charge density near surface

𝐸𝐹(𝑥)

𝐸𝐶(𝑥)

𝜌[𝑦 𝑥 ]
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Result

• Each colored line represents a 

different current.

• Surface field/current can be 

determined by the assumed y 

(surface)

𝐽
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Current vs Field Preliminary Result 


