Deducing the Size of "Breakdown-Inducing-Tips"

<u>Salvador Barranco Cárceles</u>, Andreas Kyritsakis, Veronika Zadin, and Ian Underwood

MeVArc, Tahoe City, 2024

Why Does VBD Occur?

Nano-Protrusions

Plasmons

Dislocations

Image by Adaptix Ltd.

Field transversal component – E_r

Field transversal component – $E_r \square$ Transverse energy – $\varepsilon_t \square$

$$z = c \cdot r^2$$

$$\epsilon_{t_terminal} = \int_{trajectory} E_r \cdot r \, dr$$

Field transversal component – E_r Transverse energy – ε_t

$$z = c \cdot r^2$$

$$\epsilon_{t_terminal} = \int_{trajectory} E_r \cdot r \, dr$$

$$h = \frac{r^2}{4 \cdot \eta \cdot z}$$

The Fingerprint of a Protrusion

Field transversal component – $E_r \square$ Transverse energy – $\varepsilon_t \square$

$$z = c \cdot r^2$$

$$\varepsilon_{t_terminal} = \int_{trajectory} E_r \cdot r \, dr$$

$$\eta = \frac{\varepsilon_{t_terminal}}{h \cdot E_{macro}} \in [0.25 - 0.5]$$

$$h = \frac{r^2}{4 \cdot \eta \cdot z} > 10 \ \mu m$$

	radius (nm)	height (nm)	macro field max field (V/m) (V/m)		beta
pillar_1	0.221	30	5.00E+07	5.01E+09	100.20
pillar_2	0.71	100	5.00E+07	5.01E+09	100.12
pillar_3	1.08	150	5.00E+07	4.99E+09	99.84
pillar_4	2.18	300	5.00E+07	5.00E+09	99.98
pillar_5	3.65	500	5.00E+07	5.00E+09	100.02
pillar_6	7.3	1000	5.00E+07	5.02E+09	100.46

	radius (nm)	height (nm)	macro field (V/m)	max field (V/m)	beta
pillar_1	0.221	30	5.00E+07	5.01E+09	100.20
pillar_2	0.71	100	5.00E+07	5.01E+09	100.12
pillar_3	1.08	150	5.00E+07	4.99E+09	99.84
pillar_4	2.18	300	5.00E+07	5.00E+09	99.98
pillar_5	3.65	500	5.00E+07	5.00E+09	100.02
pillar_6	7.3	1000	5.00E+07	5.02E+09	100.46

$$\eta \in [0.2 - 0.7]$$

 $h > 1 \,\mu m$

Theory Validation

(a)

Protrusion in pre-breakdown site Distance between electrodes – d = $380 \,\mu m$ Applied potential - V = 7000 VMeasured current – J ~10 nA Spot radius in phosphor screen – r < 100 μ m Protrusion height – h = 2 μ m

Protrusion base – b = 0.2 μ m

R. P. Little and W. T. Whitney, Journal of Applied Physics 34, 1963

Electron beam trayectory

Anode-Cathode distance (um)

Theory Validation – Emission Characteristics

h (um)	b (um)	h/b	d (um)	Work function (eV)	potential (V)	macro field (V/m)	max field (V/m)	β	Experimentally measured current (nA)
2	0.1789	11.18	380	4.5	7000	1.84E+07	1.85E+09	100.39	10

Theory Validation – Emission Characteristics

h (um)	b (um)	h/b	d (um)	Work function (eV)	potential (V)	macro field (V/m)	max field (V/m)	β	Experimentally measured current (nA)
2	0.1789	11.18	380	4.5	7000	1.84E+07	1.85E+09	100.39	10

Theory Validation – Emission Characteristics

h (um)	b (um)	h/b	d (um)	Work function (eV)	potential (V)	macro field (V/m)	max field (V/m)	β	Experimentally measured current (nA)
2	0.1789	11.18	380	4.5	7000	1.84E+07	1.85E+09	100.39	(10)
		1.00E-06							
		1.00E-07	7						
		1.00E-08 攵	3						
) 1.00E-09)						
		1.00E-10)						
		1.00E-11	-						
		1.00E-12							
		1.	00E+09	1.50E+09	2.00E+09 Max field (V/m)	2.50E+09	3.008	E+09	

Theory Fits Experiments

✓ Protrusion dimensions and aspect ratio

✓ Electron beam spread

✓ Field emitted current

Protrusion cross section $\approx 2 \cdot 10^{-13} \text{ m}^2$ Cathode area $\approx 6 \cdot 10^{-4} \text{ m}^2$

Size difference: 9 orders of magnitude!

Protrusion cross section $\approx 2 \cdot 10^{-13} \text{ m}^2$ Cathode area $\approx 6 \cdot 10^{-4} \text{ m}^2$

Size difference: 9 orders of magnitude!

Protrusion cross section $\approx 2 \cdot 10^{-13} \text{ m}^2$ Cathode area $\approx 6 \cdot 10^{-4} \text{ m}^2$

Size difference: 9 orders of magnitude!

Conclusions

- Theory and experimental observations in agreement
- The η method can be applied to determine the size of protrusions
- We can't generalise for modern VBD systems, but this is a solid foundation
- If we want to see pre-breakdown protrusions: <u>Phosphor screen and shadow SEM experiments</u>

THANK YOU

Conclusions

- Theory and experimental observations in agreement
- The η method can be applied to determine the size of protrusions
- We can't generalise for modern VBD systems, but this is a solid foundation
- If we want to see pre-breakdown protrusions: <u>Phosphor screen and shadow SEM experiments</u>

