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Stages of vacuum arc plasma formation
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Figure 1: Initial stages of plasma formation.
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Vacuum arc simulations

• Previous ArcPIC [1] code focused on
plasma simulation

• FEMOCS (Finite Elements on Crystal
Surfaces) code [2]

• Concurrent, multi-scale, multi-physics
• Finite element method (FEM),

particle-in-cell method (PIC), connects
to molecular dynamics (MD)

• Combines electric field and heating
• Emission calculated using GETELEC

• Current work: combine emission and
heating calculations with plasma
simulation

• Significance of different interactions
• Influence of surface-plasma interactions

Figure 2: ArcPIC [1].

Figure 3: FEMOCS [2].
[1] H. Timko et al. From field emission to vacuum arc ignition: A new tool for simulating copper vacuum arcs. Contributions to Plasma Physics, 2015.

[2] M. Veske et al. Dynamic coupling between particle-in-cell and atomistic simulations. Phys. Rev E., 2020.
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Field solution using finite element method (FEM)

• Solve PDEs of system using finite
element method

• Poisson’s equation
∇ · (ε0∇φ) = −ρ in vacuum
→ electric field

• Continuity equation
∇ · (σ∇φ) = 0 in bulk
→ current density

• Heat equation
∇ · (κ∇T ) + PJ = Cv∂tT in bulk
→ temperature
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Figure 4: Domains in simulation,
vacuum (blue) and bulk Cu (green).
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Particle-in-cell (PIC) simulation of plasma

• Particles injected to system at cathode
surface (emitted electrons, evaporated
neutrals)

• Large number of particles e.g. electrons can
be modelled as superparticles (SPs)

1 Calculate motion of particles in cell
(leapfrog method)

2 Calculate electric field for mesh (solve
Poisson’s equation using FEM)

3 Do Monte Carlo collisions between particles
within each cell [3]

Figure 5: SPs in mesh.

[3] T. Takizuka and H. Abe. A binary collision model for plasma simulation with a particle code. Journal of Computational Physics, 1977.
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Collision types
1 Elastic collisions

1 Cu + e− → Cu + e−
2 Cu + Cu → Cu + Cu

2 Coulomb collisions for all charged
particles

3 Impact ionization [4]
1 Neutrals: Cu + e− →

Cun+ + (n + 1) e−
2 Ions: Cui+ + e− →

Cu(i+n)+ + (n + 1) e−

4 Charge exchange [4]:
Cu + Cu+ → Cu+ + Cu

5 Radiative recombination:
Cu+ + e− → Cu + (γ)

Collision probability [5]
Collision takes place when
R ∼ U(0, 1) < P,

P = 1− exp (−unσ(E)∆t) , (1)

where n is the lower number density of
the two colliding particle types, σ is
the cross section and ∆t is time step.

[4] K. Matyash. Kinetic modeling of multi-component edge plasmas. PhD thesis, University of Greifswald, 2003.

[5] V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Computer
Physics Communications, 1995.
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Simulation model additions

1 Plasma simulation
2 Field ionization (significant

ionization mechanism [6])
3 Bombardment effects

(heating, sputtering)
4 Circuit model (under

development, T. Tiirats)
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Figure 6: Flowchart of present model with PIC
additions, excluding MD.

[6] S. Calatroni. Direct field ionization. In 8th International Workshop on Mechanisms of Vacuum Arcs, 2019.
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Simulation (15 GV/m)

Figure 7: Nanotip r = 50 nm, h = 50r , Floc = 15 GV/m.
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Simulation (15 GV/m)

• A runaway process occurs when field is sufficiently high
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Figure 8: State of Floc = 15 GV/m system.
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Significance of interactions

• Field ionization more significant at early stages
• Few sputtered neutrals vs. evaporation, bombardment mostly heat
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Figure 9: Particle interaction events.
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Heat sources
• Bulk: Joule heat most significant
• Surface: Nottingham heat much more significant than other heat sources,

evaporative cooling and bombardment heating contribute up to 10% of total
• Net heating of bulk and cooling of cathode surface
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Figure 10: Total heat for Floc = 15 GV/m.
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Current work: molecular dynamics coupling

• Cathode modification
requires molecular
dynamics simulation

• First step: plasma
simulation also works in 3D

• Second step: MD cathode
modification + PIC plasma
simulation

• TODO: particle exchange
between PIC and MD

Figure 11: Plasma simulation in 3D.
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Current work: molecular dynamics coupling

1 Create FEM mesh based
on atom positions

2 Run FEM + PIC
3 FEM → MD atom forces

+ velocities
4 Run MD

Figure 12: Plasma simulation with MD surface
modification (FEM mesh).
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Conclusions

• Thermal runaway and plasma formation can be reached by simulating a static
nanotip

• Plasma-surface interactions can significantly impact vacuum arc initiation
• Field ionization is more significant than impact ionization at the start of

plasma formation, while at a later stage the reverse is true
• Ongoing work:

• Cathode surface modification, MD-plasma interaction
• Circuit power coupling (Tauno Tiirats)

Preprint available: R. Koitermaa, A. Kyritsakis, T. Tiirats, V. Zadin, and F. Djurabekova.
Simulating vacuum arc initiation by coupling emission, heating and plasma processes.
arXiv:2402.08404 [physics.plasm-ph]

Thank you!
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