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How to generate unweighted events
rejection sampling (hit-or-miss):
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Basic Idea

▶ #Feynman diagrams grows quickly with #particles
→ high-multiplicity MEs are very expensive

▶ need to evaluate the ME for each trial event
→ small unweighting efficiency = bottleneck

Idea:
▶ reduce event generation time by reducing the number of calls to the

matrix element
→ use a fast & accurate surrogate

▶ correct all errors from the approximation in a 2nd unweighting step
→ method is unbiased by design

K. Danziger, TJ, S. Schumann, F. Siegert

SciPost Phys. 12, 164 (2022)
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Interlude: Partial unweighting
▶ NN are suitable as highly

accurate surrogates
. . . but can produce extreme
outliers

▶ large-weight outliers diminish
unweighting efficiency even
when contribution to total XS is
miniscule

0.00 0.25 0.50 0.75 1.00
0

1

2

xtrial,1 xtrial,2

accept

reject

target f (x)
c×proposal g(x)

w1 = 1

w2 = 1
c

f (xtrial,2)
g(xtrial,2)

Partial Unweighting
▶ allow max(g) < max(f )
▶ some events get an overweight w̃ > 1
▶ partial unweighting is the default in Sherpa (and other generators)

▶ we don’t know the global maximum
▶ partial unweighting is much faster
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Surrogate unweighting
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▶ surrogate should be fast and accurate
▶ have to correct for wrong accept/reject probabilities

→ 2nd unweighting against true target for all accepted points

K. Danziger, TJ, S. Schumann, F. Siegert

SciPost Phys. 12, 164 (2022)
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Surrogate unweighting algorithm

Start Input phase
space point u

approx. evt. weight s

accept/rejectexact evt. weight w

ratio x = w
s

accept/reject

return u and w̃ Stop

accept reject

accept

reject

K. Danziger, TJ, S. Schumann, F. Siegert

SciPost Phys. 12, 164 (2022)
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Matrix element emulation

▶ gradient boosting machines for loop-induced amplitudes [F. Bishara, M.
Montull: arXiv:1912.11055]

▶ NN for e+e− → jets [S. Badger, J. Bullock: JHEP 06 (2020) 114]

▶ NN for loop-induced amplitudes [J. Aylett-Bullock, S. Badger, R. Moodie:
JHEP 08 (2021) 066]

▶ dipole model for e+e− → jets [D. H. Truong: JHEP 11 (2021) 066]

▶ learn ME×PS for surrogate unweighting [K. Danziger, TJ, S. Schumann,
F. Siegert: SciPost Phys. 12, 164 (2022)]

▶ Bayesian networks for loop amplitudes [S. Badger, A. Butter, M.
Luchmann, S. Pitz, T. Plehn: arXiv:2206.14831]
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Factorisation-aware matrix element emulation
soft/collinear factorisation properties

|Mn+1|2 → |Mn|2 ⊗ Vijk

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419]

Ansatz

⟨|M|2⟩ =
∑
{ijk}

CijkDijk

▶ Dijk = ⟨Vijk⟩/sij : spin-averaged Catani-Seymour dipoles divided by
kinematic invariant

▶ Cijk : coefficients fit by neural network

D. Mâıtre, H. Truong

JHEP 11 (2021) 066
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Factorisation-aware matrix element emulation

4-momenta of initial and final state particles

PS mapping variables

kinematic invariants 2pi · pj

ME prediction

CS dipoles

dipole coefficients

D. Mâıtre, H. Truong

JHEP 11 (2021) 066
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Factorisation-aware matrix element emulation
Comparison with naive (non-dipole) model for Z + 4j :
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Implementation details

▶ constraint from experiment simulation workflow: CPU single threaded

→ no benefit from NN vectorisation capabilities

▶ for NN evaluation use ONNX Runtime with all possible optimisations

▶ two step unweighting implemented in Sherpa [Gleisberg et al.
JHEP02(2009)007, Bothmann et al. SciPost Phys. 7, 034 (2019)]

▶ ME generator: Amegic [Krauss et al. JHEP 02 (2002) 044]

▶ we evaluate the performance for processes that are very important for
the LHC: V+jets & tt̄+jets
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Results: effective gain factors for LHC multi-jet processes
Using 1M training events:
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feff := Tstandard
Tsurrogate

TJ, D. Mâıtre, S. Schumann, F. Siegert, H. Truong: arXiv:2301.13562

https://arxiv.org/abs/2301.13562


Results: effect of training size variation
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Colour sampling
▶ realistic use case: multi-jet merged calculations @LHC
▶ most promising part: highest multiplicity LO amplitudes
▶ at high multiplicity we prefer colour-sampling → see Max’s talk

naive ansatz
▶ use the same (colour-summed) dipole model and augment it with

colour assignments
▶ let the NN figure out the rest
▶ difficulty: with Comix [Gleisberg & Hoeche JHEP12 (2008) 039]:

T (wPS) ≈T(wME)
→ train on full event weight (wME × wPS)

Result:
→ significant drop in performance, no gains
→ further work necessary
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Summary
▶ generic method to speed up unweighting with surrogates
▶ premises: costly integrand & low unweighting efficiency
▶ dipole model very accurate for colour-summed MEs

→ incl. hadronic initial states & massive quarks
▶ large gain factors for unweighting of colour-summed MEs

→ can enable colour-summing for higher multiplicities

Outlook
▶ improve gains for colour-sampled MEs by using better suited models
▶ use dipole model for other applications
▶ emulation of loop amplitudes

Questions?
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Backup
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How to generate weighted events
importance sampling:
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Factorisation-aware matrix element emulation

Comparison with naive (non-dipole) model:
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Factorisation-aware matrix element emulation
Effect of training size variation:
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Factorisation-aware matrix element emulation

Effect of training size variation:
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Results: effect of training size variation
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