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Negative weight fractions
Danziger, Höche, Siegert, arXiv:2110.15211, ATLAS arXiv:2112.09588

‚ explored three methods to improve
the neg. weight fraction in SHERPA

1) reduce matching accuracy to
leading colour, neglect spin-
correlations

2) include jet veto on H-events,
as originally formulated in
arXiv:2012.5030

3) use local K -factor in NLOÑLO
merging from core configuration
instead of highest multiplicity

‚ public since SHERPA-2.2.8 (Sep ’19)

Sherpa+OpenLoops

Default
Leading Colour Mode
+ shower veto on H-events
+ local K-factor from core
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Simplified pilot runs
Bothmann, et.al., arXiv:2209.00843

explored how to reduce the CPU footprint for the heaviest use cases,
e.g. Z ` 0, 1, 2j @NLO` 3, 4, 5j @LO (ATLAS default)

1) improvements in LHAPDF (internal grid handling)
2) xLCy-MC@NLO, reduce S-MC@NLO to traditional MC@NLO

3) pilot run
use minimal setup to find accepted phase space point,
recompute with all bell and whistles

4) xLCy-MC@NLO-CSS, move xLCy-MC@NLO to shower
5) replace more versatile loop library like OPENLOOPS with analytical

single-purpose loop library like MCFM

6) compute the pilot run with a simplified pilot scale definition, e.g.
HT instead of scale defined through clustering
Ñ incurs a weight by reverting to correct scale in final event
Ñ small weight spread, no significant reduction of stat. power
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Simplified pilot runs
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Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

‚ new generator BlockGen
(now Pepper) to explore
suitable a algorithms for GPU
computations
Ñ process and multiplicity
Ñ dependent

‚ write out to Hdf5, read-in to
SHERPA proper for showering,
merging, ...
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Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

‚ new generator BlockGen
(now Pepper) to explore
suitable a algorithms for GPU
computations
Ñ process and multiplicity
Ñ dependent

‚ write out to Hdf5, read-in to
SHERPA proper for showering,
merging, ...
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Phase-space generators on GPUs
Bothmann, et.al., arXiv:2302.10449
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35 %

clustering

tree-level ME 34 %

loop ME

11 %

PDF

rest+overhead
16 %

pp Ñ e`e´+0,1,2j@NLO+3,4,5j@LO

‚ phase space generator impor-
tant part of the story, Chili 10 15 10 13 10 11 10 9 10 7 10 5 10 3 10 1

weight

100

101

102

103

104

co
un

ts

Z + 2j
COMIX
Chili
Chili+NF

‚ traditional automatic phase space parametrisation contains too
many channels that are not relevant for mundane inclusive phase
space region used for main ATLAS/CMS event samples

Marek Schönherr SHERPA: performance and statistics 6/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Machine Learning phase-space integration
Gao, et.al., arXiv:2001.10028, Bothmann, et.al, arXiv:2001.05478

Two approaches using normalising
flows

1) learn phase-space distribution
of momenta directly

2) learn transformation of ran-
dom numbers using existing
phase space parametrisation,
ie. replace Vegas 10−2 10−1 100 101 102
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‚ works beautifully at low multiplicities, no better than Vegas at
higher multis
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Machine Learning matrix elements

Danziger, et.al., arXiv:2109.11964, Janßen, et.al., arXiv:2301.13562

‚ replace ME with
fast ML surro-
gate

‚ use second un-
weighting step to
correct surrogate
to full ME
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Conclusions
‚ reverting to traditional MC@NLO (neglecting Nc “ 3 colour- and

spin-correlations in matching) severely reduces negative weights
without impacting the physics description of standard observables
with current uncertainties
Ñ available since SHERPA-2.2.8

‚ pilot runs for unweighted event generation massively reduces
generation time per event with no change to physics description
Ñ available since SHERPA-2.2.12

‚ newly designed matrix element and phase space generators for GPUs
will further substantially reduce generation time per event,
necessitates intermediate storage format
Ñ to be introduced in SHERPA-3.x

‚ ML sollutions to phase space integration not yet suitable for
high-multiplicities, but ME-surrogates offer working solution
Ñ to be introduced in SHERPA-3.x
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Thank you!
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