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Negative weight fractions
Danziger, Hoche, Siegert, arXiv:2110.15211, ATLAS arXiv:2112.09588

e explored three methods to improve
the neg. weight fraction in SHERPA

1)

2)

3)

reduce matching accuracy to
leading colour, neglect spin-
correlations

include jet veto on H-events,
as originally formulated in
arXiv:2012.5030

use local K-factor in NLO—LO
merging from core configuration
instead of highest multiplicity

e public since SHERPA-2.2.8 (Sep '19)

== Default
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Simplified pilot runs
Bothmann, et.al., arXiv:2209.00843
explored how to reduce the CPU footprint for the heaviest use cases,
e.g. Z+0,1,2jONLO + 3,4,5j @LO (ATLAS default)
1) improvements in LHAPDF (internal grid handling)
2) (LC)-Mc@NLO, reduce S-MC@NLO to traditional MC@NLO

3) pilot run
use minimal setup to find accepted phase space point,
recompute with all bell and whistles

4) (LC)-Mc@NLO-CSS, move {LC)-MC@NLO to shower

5) replace more versatile loop library like OPENLOOPS with analytical
single-purpose loop library like MCFM

6) compute the pilot run with a simplified pilot scale definition, e.g.
Hr instead of scale defined through clustering
— incurs a weight by reverting to correct scale in final event
— small weight spread, no significant reduction of stat. power
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Simplified pilot runs
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Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

g8 — ng
e new generator BLOCKGEN =
(now PEPPER) to explore KNSR 5/§
suitable a algorithms for GPU o E A /) T
computations B
— process and multiplicity £ )I/
]
dependent B "

e write out to Hdf5, read-in to
SHERPA proper for showering, | |
merging, ... o

16 threaded CPUs vs. 1 GPU
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Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

preliminary
e new generator BLOCKGEN I
(now PEPPER) to explore -_— .,
suitable a algorithms for GPU
computations
— process and multiplicity
dependent

02\//.

time per event ratio CPU/GPU

e write out to Hdf5, read-in to
SHERPA proper for showering,
merging, ...

gain

—e— evt gen + hdf5 out
~e- evtgen only
—e— evt gen only (CPU=Comix)

4 5
number of final states

1 CPU vs. 1 GPU
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Phase-space generators on GPUs

Bothmann, et.al., arXiv:2302.10449

pp — ete+0,1,2/@NLO+3,4,5/@LO
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e traditional automatic phase space parametrisation contains too
many channels that are not relevant for mundane inclusive phase
space region used for main ATLAS/CMS event samples
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Machine Learning phase-space integration

Gao, et.al., arXiv:2001.10028, Bothmann, et.al, arXiv:2001.05478
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e works beautifully at low multiplicities, no better than VEGAS at
higher multis
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Machine Learning matrix elements

Danziger, et.al., arXiv:2109.11964, JanBen, et.al., arXiv:2301.13562

e replace ME with
fast ML surro-
gate

e use second un-
weighting step to
correct surrogate
to full ME
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Conclusions

e reverting to traditional MCONLO (neglecting N, = 3 colour- and
spin-correlations in matching) severely reduces negative weights
without impacting the physics description of standard observables
with current uncertainties
— available since SHERPA-2.2.8

e pilot runs for unweighted event generation massively reduces
generation time per event with no change to physics description
— available since SHERPA-2.2.12

e newly designed matrix element and phase space generators for GPUs
will further substantially reduce generation time per event,
necessitates intermediate storage format
— to be introduced in SHERPA-3.x

e ML sollutions to phase space integration not yet suitable for
high-multiplicities, but ME-surrogates offer working solution
— to be introduced in SHERPA-3.x
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Thank you!
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