LHC End-Of-Year Jamboree

December 17th 2010

2010 Highlights from the CMS Experiment

Philipp Schieferdecker (Karlsruhe Institute of Technology, KIT)

on behalf of the CMS Collaboration

New Physics!

Mass Generation Problem: what is the origin of the SM elementary particle masses? <u>Higgs Boson</u>? Other Mechanism?

Dark-Matter Problem: ~25% of the universe consists of invisible matter. <u>SUSY</u>? ...?

Extra Dimensions: Are there more than three space dimensions? If yes, they give rise to <u>new heavy particles</u>, <u>microscopic black holes</u>, ...! The CMS Detector Standard Model Physics Searches for New Physics First Heavy Ion Results Prospects for 2011

The <u>Compact</u> <u>Muon</u> <u>Solenoid</u> Detector

Total weight14000 tOverall diameter15 mOverall length28.7 m

General-Purpose Detector Suited for Large Variety of Physics Signatures

39 Countries, 169 Institutes, 3170 scientists and engineers including 800 students

LHC & CMS pp Operations 2010

- → \sim 47pb⁻¹ delivered by LHC and \sim 43pb⁻¹ collected by CMS ($\epsilon \approx$ 92%)
- ➡ Average fraction of operational channels per CMS sub-system >99%
- Good performance, handled increase of more than 5 orders of magnitude in instantaneous luminosity over 7 months!

The CMS Detector Standard Model Physics Searches for New Physics First Heavy Ion Results Prospects for 2011

Brief History of the Standard Model

LHC End-Of-Year Jamboree December 17th 2010

Di-Electron and Di-Muon Spectra

High-Resolution Electron & Muon Reconstruction over full kinematic range

Di-Electron and Di-Muon Spectra

High-Resolution Electron & Muon Reconstruction over full kinematic range

Di-Electron and Di-Muon Spectra

Inclusive Jet Production

Measured Jet Production rate in good agreement within experimental and theoretical uncertainties

Inclusive Jet Production

W & Z Boson Production

LHC End-Of-Year Jamboree December 17th 2010

W & Z Boson Production: Results

Top Pair Production

Top Di-Muon Candidate Event

Top Pairs: Dilepton Channel

Two-Particle Angular Correlations

No conclusive explanation yet , sizeable impact on scientific community!

The CMS Detector Standard Model Physics Searches for New Physics First Heavy Ion Results Prospects for 2011

Search for Quark Compositeness

Search for Heavy Dijet Resonances

Published in

Phys. Rev. Lett. 105, 211801

Dijet mass differential cross section is sensitive to coupling of <u>new massive particles</u> to quarks & gluons

95% CL mass limits for new particles decaying to parton pairs: String resonances >2.5 TeV; Excited quarks >1.58 TeV; ...

Search for Microscopic Black Holes

Submitted to PLB

arXiv:1012.3375 [hep-ex]

Extra dimensions?!

W': Hint for Extra Dimensions

First SUSY Result at the LHC!

Search for high mass<u>squark & gluino</u> production in events with large missing transverse energy and two or more jets

Expanded the excluded range established during the last 20 years (!) by ~factor of two with only 35 pb⁻¹!

The CMS Detector Standard Model Physics Searches for New Physics First Heavy Ion Results Prospects for 2011

Heavy Ion (Pb-Pb) Collisions

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Jet Quenching in HI Collisions

Di-Muons in HI-Collisions

First Observation of Z Bosons in HI Collisions!

Di-Muons in HI-Collisions

First Observation of Z Bosons in HI Collisions!

The CMS Detector Standard Model Physics Searches for New Physics First Heavy Ion Results Prospects for 2011

Search for the Higgs Boson

We don't know the mass of the Higgs Boson! Evaluated the CMS discovery potential 2011 with the simulation

with 10fb⁻¹ @√s=8 TeV CMS can discover the Higgs Boson in the mass range <u>~115-600 GeV</u>!

First $(Z^0 \rightarrow \mu^+ \mu^-)(Z^0 \rightarrow \mu^+ \mu^-)$ Candidate

CMS Physics Objectives through 2011

BACKUP

Level-1 and High-Level Trigger

Search for Microscopic Black Holes

Submitted to PLB arXiv:1012.3375 [hep-ex]

- Decay into highly-energetic multiparticle final states dominated by multijets
- Main background is from QCD multijets; can't be reliably estimated from Monte Carlo
- Developed a novel method to estimate it from data, proving the invariance of $S_T = \Sigma E^{j}T w / the muliplicity$
- The first search for black holes at a particle accelerator

Set limits of 3.5-4.5 TeV on the minimum black hole mass

First SUSY Result at the LHC!

Search for high mass <u>squark & gluino</u> production in events with large missing transverse energy and two or more jets

Expanded the excluded range established during the last 20 years (!) by ~factor of two with only 35 pb⁻¹!

Jet Quenching in HI Collisions

Heavy Ion Collision Centrality:

Jet Quenching in HI Collisions

- Fraction of jets with imbalance larger than 0.24
- As a function of number of participating nucleons averaged over centrality bin

Di-Muons in HI-Collisions

