#### Jet Vetoing and HERWIG++

#### Alex Schofield

# 23<sup>rd</sup> September 2010

## **Jet Vetoing**





φ

### **Jet Vetoing**

Gaps between jets: example process (CEP)



# FKM Results Problem with matching to HERWIG++



# **Jet Vetoing**

Calculating matrix elements

$$|\mathbf{M}|^2 = \mathbf{Tr}[\mathbf{H} \ \mathbf{e}^{-\xi \Gamma^{\dagger}} \ \mathbf{S} \ \mathbf{e}^{-\xi \Gamma}]$$

Hard matrix element

Soft radiation and colour structure

$$\xi \sim 2\alpha_s / \pi \text{ Log}[Q/Q_0]$$

J. Forshaw, J. Keates, S. Marzani (2009)



### Hard scattering matrix

The matrix element for an arbitrary process can be decomposed into Lorentz structures multiplying colour basis states

$$M^{(i)} = A^{(i)}_{j} C^{(i)}_{j}$$
$$H_{ij} = A_{i} A_{j}^{\dagger}$$

#### **Colour Metric**

Representation of colour structures



#### **Anomalous dimension**

In colour basis independent notation

 $\Gamma = \frac{1}{2} Y t_{t_{1}}^{2} + i\pi t_{1} t_{2} + \frac{1}{4} \rho (t_{3}^{2} + t_{4}^{2})$ 

Radiation into gap Coulomb gluons Radiation at edges of jets "Soft, wide angle gluons"

J. Forshaw, A. Kyrieleis, M. Seymour (2008)

### Wide angle gluons



# **Coulomb gluons**

 Virtual gluons connecting two initial or two final state partons generate imaginary terms



 Can generate additional "Super-leading" logarithms

# **ρ** Function

#### $\rho = Log[Sinh[Y+R] / Sinh[R]] - Y$





#### **Anomalous dimension**

 For a general basis the parts of the anomalous dimension can be represented as colour traces

 $(S t_1.t_4)_{11} =$ 



For non-orthonormal bases the colour metric needs to be included.

### **Differences in HERWIG++**

- Different choice of basis: Colour flow basis
- Removal of colour interferences (large Nc)
- Removal of Coulomb gluon contributions
- Changes to gluon evolution
- Non-global logarithms
- Energy-Momentum conservation
- Hadronization



# **Colour partners: Model**

Gluon evolution (Both partners across the gap)

Exp[-Γ<sub>g</sub>]

Gluon evolution (Only one partner across the gap)



Parton shower chooses one of the two colour partners with 50-50 chance

Quark evolution is unchanged

#### **Cross section results**

#### Numerical HERWIG++ vs 'Analytical' HERWIG++

**Y=3** 

S=14TeV



#### **Cross section results**

#### Numerical HERWIG++ vs 'Analytical' HERWIG++

**Y=3** 

S=14TeV



### **Choice of variables**

- Varying Q or Y changes PDFs, partonic cross sections and the colour suppression
- Instead one can choose to vary only Q0 and therefore the effects of the colour suppression





#### Q=500GeV S=14TeV

# "Singlet" Term

Increasing Y



#### Y=3 Q=500GeV S=14TeV

# gg->gg Gap Fractions

#### Numerical HERWIG++ vs 'Analytical' HERWIG++



#### **Modification to shower**

- The act of choosing one of the two colour partners is one of the possible causes of the problems for exclusive events
- To further demonstrate this we now modify the parton shower to always pick the furthest partner

#### Y=3 Q=500GeV S=14TeV Modifications to shower

#### Numerical HERWIG++ vs 'Analytical' HERWIG++



### **Future work**

- Analysis of magnitude of each modification
- Implementation of non-global logarithms in analytical code
- Modifications to HERWIG++ parton shower

# **Backup slides**

### **Colour Flow Basis**

Colour flow basis



+O(1/Nc)





# Large Nc limit

- Colour interferences are subleading in Nc
- Redefine hard scattering matrix

# H'<sub>"</sub> = H<sub>"</sub> Tr[HS] Tr[H]

Born cross section unchanged



p̄<sub>⊤</sub> [GeV]