${\underset{c}{\text { Phtics }}}_{\substack{\text { ATTHE }}}^{\mathrm{L}} \mathrm{L}$ EVOLUTION WITH SUBLEADING COLOR
 TERA SCALE
 CONTRIBUTIONS

ZoltÁn NAgy DESY

in collaboration with Dave Soper

Shower Evolution

Using the factorization properties of the QCD the approximated order by order calculation can be organized according to

$$
\mathcal{U}\left(t, t^{\prime}\right)=1+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}(\tau)-\mathcal{V}(\tau)\right]
$$

From the unitary condition:

$$
\left(1 \mid \mathcal{V}(t)=\left(1 \mid \mathcal{H}_{\mathrm{I}}(t)\right.\right.
$$

The shower form of the solution is

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{N}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau) \mathcal{H}_{I}(\tau) \mathcal{N}\left(\tau, t^{\prime}\right)
$$

and the Sudakov operator is

$$
\mathcal{N}\left(t, t^{\prime}\right)=\mathbb{T} \exp \left(-\int_{t^{\prime}}^{t} d \tau \mathcal{V}(\tau)\right)
$$

Full Spliting Operator

Very general splitting operator (no spin correlation) is

$$
\begin{aligned}
& \left(\left\{\hat{p}, \hat{f}, \hat{c}^{\prime}, \hat{c}\right\}_{m+1}|\mathcal{H}(t)|\left\{p, f, c^{\prime}, c\right\}_{m}\right) \\
& \quad=\sum_{l=\mathrm{a}, \mathrm{~b}, 1, \ldots, m} \delta\left(t-T_{l}\left(\{\hat{p}, \hat{f}\}_{m+1}\right)\right)\left(\{\hat{p}, \hat{f}\}_{m+1}\left|\mathcal{P}_{l}\right|\{p, f\}_{m}\right) \frac{m+1}{2} \\
& \quad \times \frac{n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) \eta_{\mathrm{a}} \eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a}) n_{\mathrm{c}}(\hat{b}) \hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}}} \frac{f_{\hat{a} / A}\left(\hat{\eta}_{\mathrm{a}}, \mu_{F}^{2}\right) f_{\hat{b} / B}\left(\hat{\eta}_{\mathrm{b}}, \mu_{F}^{2}\right)}{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)} \sum_{k} \Psi_{l k}\left(\{\hat{f}, \hat{p}\}_{m+1}\right) \\
& \quad \times \sum_{\beta=L, R}(-1)^{1+\delta_{l k}}\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{\beta}(l, k)\right|\left\{c^{\prime}, c\right\}_{m}\right) \quad \begin{array}{l}
\text { P. Skands and } D \text {. Soper inveted a name } \\
\quad \begin{array}{l}
\text { for this kind of parton shower: } \\
\text { Partitioned dipole shower }
\end{array}
\end{array}
\end{aligned}
$$

Splitting kernel is

$$
\Psi_{l k}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{\hat{p}_{l} \cdot \hat{p}_{m+1}}\left[A_{l k} \frac{2 \hat{p}_{l} \cdot \hat{p}_{k}}{\hat{p}_{k} \cdot \hat{p}_{m+1}}+H_{l l}^{\text {coll }}\left(\{\hat{f}, \hat{p}\}_{m+1}\right)\right] \quad A_{l k}+A_{k l}=1
$$

Color operator for gluon emission is

$$
\begin{aligned}
& \left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{R}(l, k)\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
& \quad={ }_{D}\left\langle\{\hat{c}\}_{m+1}\right| t_{l}^{\dagger}\left|\{c\}_{m}\right\rangle\left\langle\left\{c^{\prime}\right\}_{m}\right| t_{k}\left|\left\{\hat{c}^{\prime}\right\}_{m+1}\right\rangle_{D} .
\end{aligned}
$$

Full Splitting Operator

Very general splitting operator (no spin correlation) is

Angular Ordered Shower

What would happen if we used angular ordering?

$$
t_{\angle}=T_{l}\left(\{\hat{p}, \hat{f}\}_{m+1}\right)=\log 2-\log \frac{\hat{p}_{l} \cdot \hat{p}_{m+1} \hat{Q}^{2}}{\hat{p}_{l} \cdot \hat{Q} \hat{p}_{m+1} \cdot \hat{Q}}=\log \frac{2}{1-\cos \vartheta_{l, m+1}}
$$

And let's have a special choice for soft partitioning function:

$$
\begin{aligned}
& A_{l k}^{\prime}=\theta\left(\vartheta_{l, m+1}<\vartheta_{l, k}\right) \frac{1-\cos \vartheta_{m+1, k}}{1-\cos \vartheta_{l, k}} \\
& \Psi_{l}^{(\text {a.o. })}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{2}{\hat{p}_{l} \cdot \hat{p}_{m+1}}\left[\frac{\hat{p}_{l} \cdot \hat{Q}}{\hat{p}_{m+1} \cdot \hat{Q}}+H_{l k}+A_{k l} \approx 1\right.
\end{aligned}
$$

One can perform the sum over the color connected parton analytically

$$
-\sum_{k}\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{\beta}(l, k)\right|\left\{c^{\prime}, c\right\}_{m}\right)=\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{\beta}(l, l)\right|\left\{c^{\prime}, c\right\}_{m}\right)
$$

No complicated color structure.

Leading Color Approx.

1. Don't have special choice for the evolution variable and the soft partitioning function

Anyway everybody uses transverse momentum and the simplest soft partitioning function :

$$
\begin{aligned}
& \text { nction: } \\
& t_{\perp}=T_{l}\left(\{\hat{p}, \hat{f}\}_{m+1}\right)=\log \frac{\hat{Q}^{2}}{-k_{\perp}^{2}} \\
& A_{l k}=\frac{\hat{p}_{k} \cdot \hat{p}_{m+1}}{\hat{p}_{k} \cdot \hat{p}_{m+1}+\hat{p}_{l} \cdot \hat{p}_{m+1}}
\end{aligned}
$$

2. But do approximation in the color space by considering only the leading color contributions

$$
\begin{aligned}
& \left(\{\hat{p}, \hat{f}, \hat{c}\}_{m+1}|\mathcal{H}(t)|\{p, f, c\}_{m}\right) \\
& \quad=\sum_{l=\mathrm{a}, \mathrm{~b}, 1, \ldots, m} \delta\left(t-T_{l}\left(\{\hat{p}, \hat{f}\}_{m+1}\right)\right)\left(\{\hat{p}, \hat{f}\}_{m+1}\left|\mathcal{P}_{l}\right|\{p, f\}_{m}\right) \\
& \quad \times \frac{n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) \eta_{\mathrm{a}} \eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a}) n_{\mathrm{c}}(\hat{b}) \hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}}} \frac{f_{\hat{a} / A}\left(\hat{\eta}_{\mathrm{a}}, \mu_{F}^{2}\right) f_{\hat{b} / B}\left(\hat{\eta}_{\mathrm{b}}, \mu_{F}^{2}\right)}{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)} \\
& \quad \times(m+1) \sum_{k} \Psi_{l k}\left(\{\hat{f}, \hat{p}\}_{m+1}\right)\left\langle\{\hat{c}\}_{m+1}\right| a_{l k}^{\dagger}\left|\{c\}_{m}\right\rangle
\end{aligned}
$$

Antenna Dipole Shower

The antenna dipole shower is rather a reorganization of the leading color partitioned dipole shower.

$$
\mathcal{H}_{l k}^{\mathrm{part}}(t) \propto\left[\mathcal{P}_{l} A_{l k}+\mathcal{P}_{k} A_{k l}\right] \frac{\hat{p}_{l} \cdot \hat{p}_{k}}{\hat{p}_{m+1} \cdot \hat{p}_{l} \hat{p}_{m+1} \cdot \hat{p}_{k}}
$$

The antenna shower tries to remove the ambiguity of the soft partitioning function $A_{l k}$ by using a new momentum mapping

$$
\mathcal{H}_{l k}^{\text {ant }}(t) \propto \mathcal{P}_{l k} \frac{\hat{p}_{l} \cdot \hat{p}_{k}}{\hat{p}_{m+1} \cdot \hat{p}_{l} \hat{p}_{m+1} \cdot \hat{p}_{k}}
$$

Now the freedom to choose $A_{l k}$ function resides in the freedom to choose $P_{l k}$. I think the best mapping for antenna shower would be

$$
\mathcal{P}_{l k}=\theta\left(\vartheta_{l, m+1}<\vartheta_{k, m+1}\right) \mathcal{P}_{l}+\theta\left(\vartheta_{k, m+1}<\vartheta_{l, m+1}\right) \mathcal{P}_{k}
$$

Parton Showers

There are basically three points where the essential differences lie, namely the momentum mapping, the evolution parameter and the choice of the soft partitioning function.

Angular ordered shower

- Full color evolution
- Easy to implement
- Loosing the full exclusiveness
- Angle doesn't control the goodness of the underlying approximation

Leading color shower

- More flexible
- Systematically improvable
- Easy to implement
- Leading color approximation

The idea is split the splitting operator "good" and "bad" part and expand the evolution operator in the "bad" splitting operator.

The inclusive splitting operators are

$$
\left(1 \mid \mathcal{V}^{(J)}(t)=\left(1 | \mathcal { H } _ { I } ^ { (J) } (t) \quad \text { and } \quad \left(1 \mid \mathcal{V}^{(S)}(t)=\left(1 \mid \mathcal{H}_{I}^{(S)}(t)\right.\right.\right.\right.
$$

Now the good part of the evolution operator is

$$
\mathcal{U}^{(J)}\left(t, t^{\prime}\right)=\mathcal{N}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(J)}(t, \tau) \mathcal{H}_{I}^{(J)}(\tau) \mathcal{N}^{(J)}\left(\tau, t^{\prime}\right)
$$

The full evolution operator is given by

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

Solution of the Evolution Equation

The idea is split the splitting operator "good" and "bad" part and expand the evolution operator in the "bad" splitting operator.

The $\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(J)}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)$

$$
\begin{aligned}
& +\int_{t^{\prime}}^{t} d \tau_{2} \int_{t^{\prime}}^{\tau_{2}} d \tau_{1} \mathcal{U}^{(J)}\left(t, \tau_{2}\right)\left[\mathcal{H}_{I}^{(S)}\left(\tau_{2}\right)-\mathcal{V}^{(S)}\left(\tau_{2}\right)\right] \\
& \quad \times \mathcal{U}^{(J)}\left(\tau_{2}, \tau_{1}\right)\left[\mathcal{H}_{I}^{(S)}\left(\tau_{2}\right)-\mathcal{V}^{(S)}\left(\tau_{1}\right)\right] \mathcal{U}^{(J)}\left(\tau_{1}, t^{\prime}\right)
\end{aligned}
$$

$$
+\cdots
$$

The full evolution operator is given by

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

$$
\begin{aligned}
& \mathcal{H}_{I}(t)=\mathcal{H}_{I}^{(J)}(t)+{\underset{V}{I}}_{\mathcal{H}_{I}^{(S)}}(t) \\
& \text { Fully exponentiated } \\
& \text { Subtracted }
\end{aligned}
$$

Solution of the Evolution Equation

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

Full Spliting Operator

Very general splitting operator (no spin correlation)

$$
\begin{aligned}
& \left(\left\{\hat{p}, \hat{f}, \hat{c}^{\prime}, \hat{c}\right\}_{m+1}|\mathcal{H}(t)|\left\{p, f, c^{\prime}, c\right\}_{m}\right) \\
& \quad=\sum_{l=\mathrm{a}, \mathrm{~b}, 1, \ldots, m} \delta\left(t-T_{l}\left(\{\hat{p}, \hat{f}\}_{m+1}\right)\right)\left(\{\hat{p}, \hat{f}\}_{m+1}\left|\mathcal{P}_{l}\right|\{p, f\}_{m}\right) \frac{m+1}{2} \\
& \quad \times \frac{n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) \eta_{\mathrm{a}} \eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a}) n_{\mathrm{c}}(\hat{b}) \hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}}} \frac{f_{\hat{a} / A}\left(\hat{\eta}_{\mathrm{a}}, \mu_{F}^{2}\right) f_{\hat{b} / B}\left(\hat{\eta}_{\mathrm{b}}, \mu_{F}^{2}\right)}{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)} \sum_{k} \Psi_{l k}\left(\{\hat{f}, \hat{p}\}_{m+1}\right) \\
& \quad \times \sum_{\beta=L, R}(-1)^{1+\delta_{l k}}\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{\beta}(l, k)\right|\left\{c^{\prime}, c\right\}_{m}\right) \quad \begin{array}{l}
\text { P. Skands and D. Soper inveted a name } \\
\text { for this kind of parton shower: } \\
\text { Partitioned dipole shower }
\end{array}
\end{aligned}
$$

Splitting kernel is

$$
\Psi_{l k}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{\hat{p}_{l} \cdot \hat{p}_{m+1}}\left[A_{l k} \frac{2 \hat{p}_{l} \cdot \hat{p}_{k}}{\hat{p}_{k} \cdot \hat{p}_{m+1}}+H_{l l}^{\text {coll }}\left(\{\hat{f}, \hat{p}\}_{m+1}\right)\right] \quad A_{l k}+A_{k l}=1
$$

Color operator for gluon emission is

$$
\begin{aligned}
& \left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}_{R}(l, k)\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
& ={ }_{D}\left\langle\{\hat{c}\}_{m+1}\right| t_{l}^{\dagger}\left|\{c\}_{m}\right\rangle\left\langle\left\{c^{\prime}\right\}_{m}\right| t_{k}\left|\left\{\hat{c}^{\prime}\right\}_{m+1}\right\rangle_{D} .
\end{aligned}
$$

Full Splitting Operator

Very general splitting operator (no spin correlation)

Jet Spliting Operator

We approximate the color operator using a projection

$$
\begin{aligned}
& \left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)=\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|t_{k}^{\dagger} \otimes t_{l}\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
& \left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)
\end{aligned}
$$

The projection keep the color connected part

$$
\left.\mathcal{C}(l, m+1) \mid\left\{c^{\prime}, c\right\}_{m+1}\right)= \begin{cases}\left.\mid\left\{c^{\prime}, c\right\}_{m+1}\right) & l \text { and } m+1 \text { color connected } \\ & \text { in }\left\{c^{\prime}\right\}_{m+1} \text { and in }\{c\}_{m+1} \\ 0 & \text { otherwise }\end{cases}
$$

The corresponding quantum level operator is

$$
\mathcal{C}(l, m+1)=C(l, m+1)^{\dagger} \otimes C(l, m+1)
$$

Jet Splitting Operator

We approximate the color operator using a projection

The corresponding quantum level operator is

$$
\mathcal{C}(l, m+1)=C(l, m+1)^{\dagger} \otimes C(l, m+1)
$$

Jet Splitting Operator

- This operator can evolve interference contribution.
- Full collinear and soft+collinear contributions included.
- Wide angle pure soft contributions are not fully included. Omitted part is suppressed by $1 / N_{c}^{2}$. It is treated perturbative.
- The corresponding inclusive splitting operator can be exponentiated easily.
- Leads to a quasi Markovian process.

$$
\begin{aligned}
\left.\left.\mathcal{N}^{(\mathrm{J})}\left(t, t^{\prime}\right) \mid p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)= & \exp \left\{-\int_{t^{\prime}}^{t} d \tau\left[\lambda_{1}\left(\{p, f, c\}_{m}\right)+\lambda_{2}\left(\left\{p, f, c^{\prime}\right\}_{m}\right)\right]\right\} \\
& \left.\left.\times \mid p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)
\end{aligned}
$$

Numerical Efficiency

With a simple "color shower" we can estimate the importance of the subleading color contributions.

$$
N_{m}(P)=\sum_{i=1}^{N}\left\langle\left\{c_{i}^{\prime}\right\}_{m} \mid\left\{c_{i}\right\}_{m}\right\rangle \delta\left(P-P_{m}\left(\left\{c_{i}^{\prime}, c_{i}\right\}_{m}\right)\right)
$$

$$
\text { 7000 } \equiv
$$

Conclusions

- I think it is possible to go beyond the leading color approximation or include wide angle radiations.
- We have shown that it is possible to compute parton shower with full color systematically using mainly standard Monte Carlo techniques.
- We might have some numerical complication....
- It would be interesting to build in the coherence effect explicitly without imposing direct angular ordering.

