Parton Showers and Jet Rates

Bryan Webber
University of Cambridge

- $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{k}_{\mathrm{t}}$-jet rates

4- and 5-jet rates

- resummation
- angular and pt_{t} ordering
> colour structure
- anti- k_{t} jet rates

Parton showers

- A convenient way to resum enhanced terms to all orders
- Should reproduce correct jet rates
- k_{t}-jet rates:

$$
y_{i j}=2 \min \left\{E_{i}^{2}, E_{j}^{2}\right\}\left(1-\cos \theta_{i j}\right) / Q^{2}>y_{\mathrm{cut}}
$$

Brown \& Stirling, Z.Phys.C53:629-636, 1992.
Catani et al., Phys.Lett.B269:432-438, I99I.

k_{t} jet rates

Table 1. Jet fractions in $e^{+} e^{-} \rightarrow$ hadrons to NLL order in $L=\ln \left(1 / y_{\text {cut }}\right)$, expanded to third order in $a=\alpha_{\mathrm{S}} / \pi$.

```
\(R_{2}=1+a\left(R_{21} L+R_{22} L^{2}\right)+a^{2}\left(R_{23} L^{3}+R_{24} L^{4}\right)+a^{3}\left(R_{25} L^{5}+R_{26} L^{6}\right)+\ldots\)
\(R_{21}=3 C_{F} / 2\)
\(R_{22}=-C_{F} / 2\)
\(R_{23}=-3 C_{F}^{2} / 4-11 C_{F} C_{A} / 36+C_{F} N_{f} / 18\)
\(R_{24}=C_{F}^{2} / 8\)
\(R_{25}=3 C_{F}^{3} / 16+11 C_{F}^{2} C_{A} / 72-C_{F}^{2} N_{f} / 36\)
\(R_{26}=-C_{F}^{3} / 48\)
\(R_{3}=a\left(R_{31} L+R_{32} L^{2}\right)+a^{2}\left(R_{33} L^{3}+R_{34} L^{4}\right)+a^{3}\left(R_{35} L^{5}+R_{36} L^{6}\right)+\ldots\)
\(R_{31}=-3 C_{F} / 2\)
\(R_{32}=C_{F} / 2\)
\(R_{33}=3 C_{F}^{2} / 2+7 C_{F} C_{A} / 12-C_{F} N_{f} / 12\)
\(R_{34}=-C_{F}^{2} / 4-C_{F} C_{A} / 48\)
\(R_{35}=-9 C_{F}^{3} / 16-137 C_{F}^{2} C_{A} / 288-7 C_{A}^{2} C_{F} / 160+5 C_{F}^{2} N_{f} / 72+C_{F} C_{A} N_{f} / 160\)
\(R_{36}=C_{F}^{3} / 16+C_{F}^{2} C_{A} / 96+C_{F} C_{A}^{2} / 960\)
\(R_{4}=a^{2}\left(R_{43} L^{3}+R_{44} L^{4}\right)+a^{3}\left(R_{45} L^{5}+R_{46} L^{6}\right)+\ldots\)
\(R_{43}=-3 C_{F}^{2} / 4-5 C_{F} C_{A} / 18+C_{F} N_{f} / 36\)
\(R_{44}=C_{F}^{2} / 8+C_{F} C_{A} / 48\)
\(R_{45}=9 C_{F}^{3} / 16+71 C_{F}^{2} C_{A} / 144+217 C_{F} C_{A}^{2} / 2880-41 C_{F}^{2} N_{f} / 720-C_{F} C_{A} N_{f} / 120\)
\(R_{46}=-C_{F}^{3} / 16-C_{F}^{2} C_{A} / 48-7 C_{F} C_{A}^{2} / 2880\)
\(R_{5}=a^{3}\left(R_{55} L^{5}+R_{56} L^{6}\right)+\ldots\)
\(R_{55}=-3 C_{F}^{3} / 16-49 C_{F}^{2} C_{A} / 288-91 C_{F} C_{A}^{2} / 2880+11 C_{F}^{2} N_{f} / 720+C_{F} C_{A} N_{f} / 480\)
\(R_{56}=C_{F}^{3} / 48+C_{F}^{2} C_{A} / 96+C_{F} C_{A}^{2} / 720\)
```


4- and 5-jet rates

(a)

(b)

(c)
$\longrightarrow R_{4} \sim a^{2} L^{4}\left(C_{F}^{2} / 8+C_{F} C_{A} / 48\right)$

(b)

(c)

(e)

(f)
$\longrightarrow R_{5} \sim a^{3} L^{6}\left(C_{F}^{3} / 48+C_{F}^{2} C_{A} / 96+C_{F} C_{A}^{2} / 720\right)$

5-jet differential rate

NLO: Frederix et al., arXiv: 1008.5313 (20I0)

$$
\frac{1}{\sigma_{\mathrm{tot}}} \frac{d \sigma}{d y_{45}}=-\left.\sum_{n=5}^{\infty} \frac{d R_{n}}{d y_{\mathrm{cut}}}\right|_{y_{\mathrm{cut}}=y_{45}}
$$

Fixed order breaks down for $-\ln \left(\mathrm{y}_{45}\right)>6$

ALEPH: Heister et al., Eur.J.Phys.C35,457 (2004)

Resummation of jet rates

- Leading abelian $\left(C_{F}\right)^{n}$ terms exponentiate

$$
R_{n+2}^{(\mathrm{ab})} \sim \frac{1}{n!}\left(\frac{1}{2} a C_{F} L^{2}\right)^{n} \exp \left(-\frac{1}{2} a C_{F} L^{2}\right)
$$

- NLL and non-abelian terms complicated

Can use parton shower to resum:

- sequential $\mathrm{I} \rightarrow 2$ branching process
- branching probability $\frac{d q}{q} \frac{\alpha_{\mathrm{S}}}{\pi} P(z) d z$

Parton showers

- Angular ordered shower gives correct rates

$$
\begin{aligned}
& R_{4} \sim a^{2} L^{2}\left(C_{F}^{2} / 8+C_{F} C_{A} / 48\right) \\
& R_{5} \sim a^{2} L^{2}\left(C_{F}^{3} / 48+C_{F}^{2} C_{A} / 96+C_{F} C_{A}^{2} / 720\right)
\end{aligned}
$$

- Pt -ordered shower more convenient
- hardest emissions come first
- easier NLO improvement (POWHEG,...)
- But jet rates are wrong

$$
\begin{aligned}
& R_{4}^{\left(p_{t}\right)} \sim a^{2} L^{2}\left(C_{F}^{2} / 8+C_{F} C_{A} / 24\right) \\
& R_{5}^{\left(p_{t}\right)} \sim a^{2} L^{2}\left(C_{F}^{3} / 48+C_{F}^{2} C_{A} / 48+C_{F} C_{A}^{2} 13 / 2880\right)
\end{aligned}
$$

Angular vs Pt_{t} ordering

(a)

(b)

(c)

- Angular: regions A (+C)
- Pt_{t} : regions $\mathrm{A}+\mathrm{B}$
(b) $\mathrm{B} \sim \mathrm{C} \rightarrow$ logs OK
(c) no $\mathrm{C} \rightarrow$ overestimate
- should angle-order (c) only

$\mathrm{Pt}_{\mathrm{t}}+$ soft-angle ordering

- Pt_{t} ordering gives correct jet rates if we veto angles disordered w.r.t."creation" vertex
"created" parton is the softer one

CKKW: Catani et al., JHEPII(200I)063

- This gives correct parton-level jet rates and distributions but wrong colour structure

Angular ordering assigns coherent emission from $b+c$ to parent a
(Pt^{+}soft-angle assigns instead to harder branch

(a)

(b)

- Rearrange colour structure for hadronization

D or do pt ordering plus "truncated showers"

Anti- k_{t} Jet Rates

- Anti-kt for $\mathrm{e}^{+} \mathrm{e}^{-}$:
- Define $\epsilon_{i j}=\min \left\{Q / E_{i}, Q / E_{j}\right\} \theta_{i j}, \quad \epsilon_{i}=\epsilon Q / E_{i}$
- Combine i,j if $\epsilon_{i j}$ smallest,

Else if ϵ_{i} smallest, then

- If $\epsilon_{i}<1$ keep i as a jet
- Else throw i away
- Resum $L=\ln \left(1 / \epsilon^{2}\right)$

Anti-kt: Cacciari, Salam \& Soyez, JHEP04(2008)063

Anti- k_{t} Jet Rates

$R_{4}^{\text {anti }} \sim a^{2} L^{4}\left(C_{F}^{2} / 2+C_{F} C_{A} / 8\right)$
$R_{5}^{\text {anti }} \sim a^{3} L^{6}\left(C_{F}^{3} / 6+C_{F}^{2} C_{A} / 8+C_{F} C_{A}^{2} / 48\right)$

- LL abelian terms exponentiate again

$$
R_{n+2}^{(\mathrm{anti}, \mathrm{ab})} \sim \frac{1}{n!}\left(a C_{F} L^{2}\right)^{n} \exp \left(-a C_{F} L^{2}\right)
$$

- Resum NLL and non-abelian?

Conclusions

- Parton showers
- angular ordering needed $+$
- Pt soft angle OK for jet rates
- but needs colour rearrangement
- Anti- k_{t} algorithm
- different pattern of leading logs
- resummation?

