

Are $N_c = 3 \neq \infty$ effects important in parton showers?

- Why N_c suppressed terms may be important
- Sources of N_c suppressed terms
- A basis for treating color structure
- "Color amplitude shower"
- Results from a toy shower
- Conclusion and future plans

Work in progress, JHEP 0909:087

Cambridge Septermber 23, 2010 Malin Sjödahl

A first generation parton shower

• A parton can be seen as emitted from one other parton using pure $1 \rightarrow 2$ splitting (JETSET)

• Resums the collinear splitting probability using DGLAP splitting functions

$$\Delta_k(t) = \exp\left(-\sum_i \int_{t_0}^t \frac{dt'}{t'} \alpha_s(t') \int \frac{dz}{2\pi} P_{ik}\right)$$

A second generation parton shower

• Resums also the softly enhanced radiation probabilities in the $N_c \rightarrow \infty$ limit

$$\Delta_k(t) = \exp\left(-\frac{2}{\pi} \sum_{\text{dipoles i,j(i)}} \int_{t_0}^t \frac{dt'}{t'} \alpha_{\rm s}(t') \int \frac{dyd\phi}{2\pi} \frac{k_T^2 p_i . p_j}{2 p_i . k p_j . k}\right)$$

• In the soft limit a parton can be seen as being emitted coherently from a pair of color connected partons, "dipole shower"

Why worry about N_c suppressed terms?

- "Non-leading color terms are suppressed by 1/ N_c^2 " (not quite true, true for LO gluon only processes)
- The number of suppressed terms grows $\sim (N_{\text{partons}}!)^2$ The number of non-suppressed terms grows just like $\sim (N_{\text{partons}}!)$
- If non-leading terms always were N_c^2 suppressed, the relative importance can grow like $\sim (N_{\text{partons}}!)/N_c^2$ (slower with random averaging)

Different sources of N_c -suppressed terms

- In a tree level parton shower (no virtual exchange, only emission), N_c -suppressed terms are ignored \rightarrow one source of ignored $1/N_c^{(2)}$
- At loop level, another source of suppressed terms comes from virtual gluon exchanges which rearrange the color structure → exponentiation has to be done at the amplitude level → basis needed

$$\exp(-\int_{t_0}^t \frac{dt'}{t'} \alpha_{\rm s}(t) \int \dots {\bf Matrix}) |{\rm state}>$$

The color rearranging terms tend to be suppressed, but in

$$\exp(-\int_{t_0}^t \frac{dt'}{t'}(\mathsf{moderate} + \mathsf{small}))$$

the small number is not irrelevant when $\int_{t_0}^t \frac{dt'}{t'}$ is large! \rightarrow different source of N_c -suppressed terms

• The color space is a finite dimensional vector space equipped with a (real) scalar product

$$< A, B > = \sum_{a,b,c,...} A_{a,b,c,...} (B_{a,b,c,...})^*$$

Example: If $A = t^g_{ab} t^g_{cd}$, then $\langle A | A \rangle = \sum_{a,b,c,d,g,f} t^g_{ab} t^g_{cd} t^f_{ba} t^f_{dc}$

Individual colors are not observed, we always sum or average over them
 → We don't need a basis caring about red green or blue, we only need a
 basis caring about how the color of various partons are related to each
 other!

One way of constructing a complete basis for any fixed number of external (colored or uncolored) particles is to:

- Decompose all gluons into $q\bar{q}\mbox{-}\mb$
- Connect quarks and anti-quarks in all possible ways, such that the $q\bar{q}$ pairs corresponding the the same gluon are not connected (SU(3) generators are traceless)
- If only gluons, make sure the internal quarks and anti-quarks enter on equal footing

Example: $qg \rightarrow qg$

• Split gluons into $q\bar{q}$ pairs and connect lines in all possible ways

• In the $N_c \to \infty$ limit

- The basis constructed in this way is complete
- Overcomplete for $N_c \neq \infty$ (and more than a few partons)
- The basis states are orthogonal only when $N_c \to \infty$, otherwise their scalar products are suppressed by $1/N_c$ or higher powers
- For $N_{\rm q}=N_{ar{\rm q}}$ and $N_g=0$, there are precisely $N_{\rm q}!$ basis states
- The number of basis tensors grows roughly factorially as $(N_g+N_{\rm q})!$ for $N_{\rm q}+N_{\rm \bar{q}}+N_g$ partons
- Hence the naive importance of suppressed terms $\sim (N_{\rm partons}!)^2/N_c^2$ from the number of terms in

$$\langle A, A \rangle = \sum_{n,m} c_m c_n^* \langle C^m | C^n \rangle$$

A dipole shower in this basis

Can be thought of in the language of the N_c → ∞ limit of the above basis (apart from C_F...)

 Also, it is easy to see that in this limit only "color neighbors" radiate, i.e. only neighboring partons on the quark-lines in the basis
 → above basis well suited for comparing to parton showers

An amplitude color shower

Emit one parton at the time (= imagine an evolution time)
 → the 5th gluon cannot interfere with the 3rd, this is intrinsic to the shower approximation

 \rightarrow "amplitude shower < all Feynman diagrams calculation"

• Keep all contributions to the emission $\mathsf{n} \to \mathsf{n}{+}1$

- In this sense "amplitude shower > shower"
- "shower < amplitude shower < all Feynman diagrams calculation"

An amplitude color shower

• First step: do this at the tree level only (no virtual color rearranging gluons)

$$\begin{split} \Delta_k(t) &= \exp(-\frac{2}{\pi} \sum_{\text{pairs } i,j} \sum_{mn} \int_{t_0}^t \frac{dt'}{t'} \alpha_{\rm s}(t') \int \frac{dy d\phi}{2\pi} \dots \\ &\frac{1}{N^{\rm orm}} c_n c_m^* < C^n |\frac{k_T^2 p_i \cdot p_j}{2 \ p_i \cdot k \ p_j \cdot k} T^{(i)} \cdot T^{(j)} |C^m >) \end{split}$$

 \rightarrow ugly color factors and bad scaling, but doable Let each pair "compete" with its own scale

- Also like to keep the virtual color rearranging terms
 - \rightarrow rotate state in color space as well \rightarrow matrix exponentiation needed

A toy amplitude color shower

- Treat: $N_c = 3 \text{ color } \otimes \text{ random number } (\in [-0.5, 0.5])$ (to be replaced by $N_c = 3 \text{ color } \otimes \text{ other quantum numbers})$
- Start with $q\bar{q}$ and radiate N_g gluons, compare the results when all, respectively only some (leading), terms are kept
- Will the ratio

$$\frac{A(N_{\text{partons}})|^2|_{\text{Leding terms}}}{|A(N_{\text{partons}})|^2|_{\text{All terms}}} \neq 1?$$

- So far, only tree level parton shower, no virtual gluon exchange!
- Throw away all sub-leading terms, take $C_F = N_c/2 = 3/2$ (true limit)
- Keep powers of $C_F = (N_c^2 1)/(2N_c) = 4/3$, but ignore other suppressed terms (parton shower like)

Results from a toy QCD shower

- Importance of suppressed terms does grow, but not like $N_{partons}!$ \rightarrow Random averaging, shower structure, more?
- Treatment of C_F is very important

Conclusion and future plans

- No one knows if suppressed terms are important
- $\bullet~$ Good reasons to expect that they are $\rightarrow~$ well worth to study

For this reason:

- Incorporate color code in existing tree level parton shower (probably in cooperation with Simon Plätzer)
- See if we find anything interesting
- Add virtual gluon exchange (rearrange the color without emission)
- Speed up program by saving intermediate results

An ordinary parton shower

• Treats:

$$p \otimes f \otimes \operatorname{spin} \operatorname{average} \otimes N_c \to \infty$$
 color

- Emits one particle at the time
- Assumes an ordering variable like k_⊥, Ariadne, Sherpa virtuality, Pythia angle, Herwig

$$\Delta(t) = \exp(-\int_{t_0}^t \frac{dt'}{t'} \alpha_{\rm s}(t') \int \dots)$$

- Resums large logs which compensate for the smallness of $\alpha_{\rm s}$
- is a Markov process at the |A|² level
 (the next step depend on the state, but not on the history)

Why worry about N_c suppressed terms?

" Non-leading color terms are suppressed by $1/N_c^2$ ": a counter example

Why worry?

- "Non-leading color terms tend to be suppressed by $1/N_c^2$ " counter examples exist
- Is true for same order $\alpha_{\rm s}$ diagrams with only gluons ('t Hooft 1973)
- A parton shower is an all order (Sudakov) exponentiation

$$\Delta(t) = \exp(-\int_{t_0}^t \frac{dt'}{t'} \alpha_{\rm s}(t) \int \dots)$$

 $\bullet\,$ Certainly not only one power in $\alpha_{\rm s}$ is needed

Some rescuing mechanisms?

- Current parton showers actually do work quite well, this is a reason for believing that there is a suppression mechanism, but:
 Suppressed terms will be more important at LHC as more space in log(k_T)
- In the collinearly (rather than softly) enhanced regions, the emitted parton can be seen as coming from only one parton and the color structure is trivial \rightarrow no need for N_c suppressed terms
- Random averaging:

The suppressed terms sometimes contributes positively to the cross section, and sometimes negatively. Perhaps they tend to cancel quicker than expected? (Via correlations in emission?)

• α_s suppression: $1/N_c^1$ suppressed terms tend to also be associated with powers of α_s^2 , but remember:

Large logs accompany $\alpha_{\rm s},$ this is why we need resummation

Gap survival: $qq \rightarrow qq$, $qg \rightarrow qg$ and $gg \rightarrow gg$ Y=3

gluon, dashed lines without color rearranging gluons. $\xi = \int_{Q_0}^{Q} \alpha_s(q_T) \frac{dq_T}{q_T}$ (Cone radius 1).

Gap survival: $qq \rightarrow qq$, $qg \rightarrow qg$ and $gg \rightarrow gg$ Y=3

(Cone radius 1).

• In general an amplitude is a linear combination of different color structures, for example...

A gluon exchange in this basis "directly" i.e. without using scalar products gives back a linear combination of (at most 4) basis tensors

• N_c -enhancement possible only for near by partons

 \rightarrow only "color neighbors" radiate in the $N_c \rightarrow \infty$ limit

