# Automisation of ME+PS Merging with NLO Accuracy in SHERPA

Marek Schönherr<sup>1</sup>

IKTP TU Dresden

23/09/2010





<sup>1</sup>In collaboration with: S. Höche, F. Krauss, F. Siegert

#### Contents

#### **1** Automisation of the POWHEG Method

#### **2** Automisation of the MENLOPS Method

#### **3** Conclusions

#### Automisation of the POWHEG Method

• POWHEG master equation, P. Nason et.al JHEP11(2004)040, JHEP11(2007)070  $\rightarrow$  ME corrected parton shower supplemented by local NLO weight

$$\begin{split} \langle O \rangle \; = \; \int \mathrm{d}\Phi_B \, \bar{\mathrm{B}}(\Phi_B) \left[ \underbrace{\Delta^{(\mathsf{ME})}(t_0, \mu^2)}_{\text{unresolved}} \; O(\Phi_B) + \sum_{\{\tilde{\imath}j, \tilde{k}\} \to \{ij, k\}} \int_{t_0}^{\mu^2} \mathrm{d}\Phi_{R|B} \, \tilde{J}_{ij,k} \; O(\Phi_R) \right. \\ & \times \underbrace{\frac{\mathrm{R}_{ij,k}(\Phi_R)}{\mathrm{B}(\Phi_B)} \; \Delta^{(\mathsf{ME})}(t, \mu^2)}_{\text{resolved}} \, \end{bmatrix} \end{split}$$

• no-branching probability

$$\Delta^{(\mathsf{ME})}(t,t') = \exp\left\{-\sum_{\{\tilde{\imath}\tilde{\jmath},\tilde{k}\}\to\{ij,k\}}\int_{t}^{t'} \mathrm{d}\Phi_{R|B}\,\tilde{J}_{ij,k}\,\frac{\mathrm{R}_{ij,k}(\Phi_{R})}{\mathrm{B}(\Phi_{B})}\right\}$$

- Jacobian, symmetry factors, etc. absorbed in  $\tilde{J}_{ij,k}$
- $R_{ij,k} = \frac{S_{ij,k}}{\sum S_{mn,o}} R$  projection on one singular region

#### **Step I – Phase Space Generation**

$$\bar{\mathrm{B}}(\Phi_B) = \mathrm{B}(\Phi_B) + \mathrm{V}(\Phi_B) + \mathrm{I}(\Phi_B) + \int \mathrm{d}\Phi_{R|B} \Big[ \mathrm{R}(\Phi_R) - \mathrm{S}(\Phi_R) \Big]$$

- tree-level ME generator AMEGIC++ for  $B,\,R$  \_JHEP02(2002)044
- automated CS-subtraction in AMEGIC++ for I, S  $_{\mbox{EPJC53(2008)501}}$
- $V \mbox{ from BLACKHAT}$  and MCFM  $\mbox{PRD78(2008)036003}, \mbox{PRD60(1999)113006}$

 $\Rightarrow$  use usual Born phase space  $\otimes$  tangent plane spanned by dipole variables

|                | $e^+e^-  ightarrow { m hadrons}$ |           | $e^+p \to e^+ + j + X$   |                                | $p\bar{p} \rightarrow e^+e^- + X$ |                       |
|----------------|----------------------------------|-----------|--------------------------|--------------------------------|-----------------------------------|-----------------------|
|                | $E_{\rm cms} = 1$                | 91.2 GeV  | $E_{\rm cms} = Q^2 > 1!$ | 300 GeV<br>50 GeV <sup>2</sup> | $E_{\rm cms} = 66 < m_{\ell\ell}$ | 1.96 TeV<br>< 116 GeV |
| $\mu_R, \mu_F$ | $\sqrt{s}$                       |           | $\sqrt{Q^2}$             |                                | $m_{\perp}$                       |                       |
| Factor         | POWHEG                           | Nlo       | POWHEG                   | Nlo                            | Powheg                            | Nlo                   |
| 1/2            | 30179(18)                        | 30195(20) | 3906(9)                  | 3908(10)                       | 243.00(14)                        | 243.06(16)            |
| 1              | 29411(17)                        | 29416(18) | 4047(10)                 | 4050(11)                       | 239.01(13)                        | 238.96(15)            |
| 2              | 28680(16)                        | 28697(18) | 4180(10)                 | 4188(11)                       | 236.23(13)                        | 236.13(14)            |

Marek Schoenherr

IKTP TU Dresden

Automisation of ME+PS Merging with NLO Accuracy in SHERPA

#### Step II – Shower Reweighting

• need maximum reweighting factor  $w_{ij,k}$  for every splitting function  $\rightarrow$  bookkeeping during integration

$$\frac{\mathbf{R}_{ij,k}}{\mathbf{B}} = \frac{\mathbf{R}_{ij,k}}{\mathbf{R}_{ij,k}^{(\mathsf{PS})}} \frac{\mathbf{R}_{ij,k}^{(\mathsf{PS})}}{\mathbf{B}} = w_{ij,k} \cdot \mathcal{K}_{ij,k}$$

• check implementation by replacing  $R_{ij,k} \rightarrow R_{ij,k}^{(PS)}$ 



IKTP TU Dresden

Automisation of ME+PS Merging with NLO Accuracy in SHERPA

# Results – $e^+e^- \rightarrow$ hadrons – 91.2 GeV



Data from ALEPH EPJC35(2004)457

## **Results** – $p\bar{p} \rightarrow \ell^+ \ell^- + X$ – **1.96 TeV**



Data from DØ arXiv:1006.0618, PRD76(2007)012003

# Results – $pp \rightarrow Z[\rightarrow e^+e^-] Z[\rightarrow \mu^+\mu^-]$ – 14 TeV



#### Vanishing Borns

- spurious singularities when  $B\to 0$  but R finite, as noted in \_JHEP07(2008)060  $\to R/B$  does not exponentiate
- split  $R = R^{(s)} + R^{(r)} = R \frac{Z}{Z+H} + R \frac{H}{Z+H}$

$$Z = \frac{\mathrm{B}}{\mathrm{B}_{\max}} \qquad \qquad H = \kappa_{\mathrm{res}}^2 \frac{t}{t_{\max}} \Theta\left(w_{ij,k} - w_{ij,k}^{\mathrm{th}}\right)$$

 $\rightarrow$  only exponentiate  $\mathrm{R}^{(s)},\,\mathrm{R}^{(r)}$  forms separate sample (  $\notin\bar{\mathrm{B}})$ 

• two parameters  $\kappa_{\text{res}}$  and  $w_{ii,k}^{\text{th}}$  $\kappa_{res}$  dependence of  $w_{gud}$ W p 101  $^{1}_{1/\mathcal{R}^{(8)}} d\mathcal{R}^{(8)}/dlog_{10} w_{g_{10}d}$ do/dp<sup>W</sup> [pb/GeV]  $10^{2}$  $\kappa_{res} = 0.5$ 101  $\zeta_{res} = 1$  $\zeta_{res} = 2$  $x_{res} = 4$  $\kappa_{res} = 8$ 10 10-2 = 100= 10 $10^{-4}$  $10^{-3}$ = 10010  $10^{-5}$ Ratio  $10^{-6}$ 1.2 10-7 0.8 0.6 0 101  $10^{2}$ -1 2 3 log10 wgu,d  $p^W_{\perp}$  [GeV]

#### **Scale Variations**

- reduced scale dependence in  $\bar{\mathrm{B}}$
- compare two scale choices  $\mu=m_{\ell\nu}$  and  $\mu=m_{\perp}$
- vary scales locally in  $\bar{\mathrm{B}}$  (dark), or globally (light) also in PS



## Automisation of the MENLOPS Method

• ME+PS method JHEP11(2001)063, JHEP05(2009)053

$$\begin{split} \langle O \rangle \; = \; \int \mathrm{d}\Phi_B \; \mathrm{B}(\Phi_B) \left[ \underbrace{\Delta^{(\mathsf{PS})}(t_0, \mu^2)}_{\text{unresolved}} \; O(\Phi_B) + \sum_{\{\tilde{\imath}\tilde{\jmath}, \tilde{k}\} \to \{ij,k\}} \int_{t_0}^{\mu^2} \mathrm{d}\Phi_{R|B} \; \tilde{J}_{ij,k} \; \; O(\Phi_R) \\ & \times \left( \underbrace{\mathcal{K}_{ij,k}(\Phi_{R|B}) \; \Delta^{(\mathsf{PS})}(t, \mu^2) \; \Theta\left(Q_{\mathrm{cut}} - Q_{ij,k}\right)}_{\text{resolved, PS domain}} \right. \\ & + \underbrace{\frac{\mathrm{R}_{ij,k}(\Phi_R)}{\mathrm{B}(\Phi_B)} \; \Delta^{(\mathsf{PS})}(t, \mu^2) \; \Theta\left(Q_{ij,k} - Q_{\mathrm{cut}}\right)}_{\text{resolved, ME domain}} \end{split}$$

resolved, ME domain

- $\sigma_{\rm incl}$  at LO accuracy
- real emission phase space sliced into ME regime and PS regime using  $Q_{\rm cut}$
- explicit unitarity violation
- importance of truncated showering to retain PS accuracy

#### Automisation of the MENLOPS Method

• idea first published by K. Hamilton, P. Nason JHEP06(2010)039

$$\begin{split} \langle O \rangle \; = \; \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}(\Phi_B) \left[ \underbrace{\Delta^{(\mathrm{ME})}(t_0, \mu^2)}_{\text{unresolved}} \; O(\Phi_B) + \sum_{\{ij, \bar{k}\} \to \{ij, k\}} \int_{t_0}^{\mu^2} \mathrm{d}\Phi_{R|B} \; \tilde{J}_{ij,k} \; \; O(\Phi_R) \right. \\ & \times \frac{\mathrm{R}_{ij,k}(\Phi_R)}{\mathrm{B}(\Phi_B)} \left( \underbrace{\Delta^{(\mathrm{ME})}(t, \mu^2) \; \Theta\left(Q_{\mathrm{cut}} - Q_{ij,k}\right)}_{\text{resolved}, \; \mathrm{POWHEG \; domain}} + \underbrace{\Delta^{(\mathrm{PS})}(t, \mu^2) \; \Theta\left(Q_{ij,k} - Q_{\mathrm{cut}}\right)}_{\text{resolved}, \; \mathrm{ME \; domain}} \right)$$

- ${\rm B} \rightarrow \bar{\rm B} \Rightarrow \sigma_{\rm incl}$  at NLO accuracy
- PS domain filled by POWHEG
- explicit local K-factor  $\frac{\bar{B}}{B}$  for higher order ME samples  $\rightarrow$  determined by backwards clustering on to Born configuration
- explicit unitarity violation, less severe than in  $\mathsf{ME}{+}\mathsf{PS}$ 
  - $\rightarrow$  does not spoil NLO accuracy

## Merging Systematics – $p\bar{p} \rightarrow \ell^+ \ell^- + X$ – 1.96 TeV

| $N_{max}$       | 0        | 3      |        |        |  |
|-----------------|----------|--------|--------|--------|--|
| $Q_{cut}$       |          | 15 GeV | 20 GeV | 40 GeV |  |
| $\sigma_{incl}$ | 478.3(4) | 497(4) | 489(3) | 482(2) |  |

 $\Rightarrow < 5\%$ 



# **Results** – $e^+e^- \rightarrow$ hadrons – 91.2 GeV



Data from ALEPH EPJC35(2004)457

# **Results** – $e^+e^- \rightarrow$ hadrons – 91.2 GeV



Marek Schoenherr

IKTP TU Dresden

Automisation of ME+PS Merging with NLO Accuracy in SHERPA

**Results** –  $e^+p \to e^+ + j + X$  – **300** GeV



Data from H1 Phys.Lett.B542(2002)193, EPJC19(2001)289

## **Results** – $p\bar{p} \rightarrow \ell^+ \ell^- + X$ – **1.96 TeV**



Marek Schoenherr

Automisation of ME+PS Merging with NLO Accuracy in SHERPA

# Results – $pp \rightarrow W^+[\rightarrow e^+\nu_e] W^-[\rightarrow \mu^-\bar{\nu}_\mu]$ – 14 TeV



#### Conclusions

- POWHEG method fully automated (phase space integration and PS reweighting)
- extended automated ME+PS merging to include NLO core process
  - $\rightarrow \mathsf{MENLOPS}$
  - $\rightarrow$  inclusive observables at NLO accuracy
  - $\rightarrow$   $\langle {\it O}({\rm extra~jets})\rangle$  with LO+(N)LL accuracy
- challenge to merge multiple NLO processes  $\rightarrow \langle O(\text{extra jets}) \rangle$  formally with NLO+(N)LL accuracy
- $\bullet\,$  no automisation of V available
  - $\rightarrow$  have to link libraries like BLACKHAT and MCFM
  - $\rightarrow$  Binoth-LesHouches Interface available