KOD KOD KED KED ADD ADD

V-Gamma Production at LHC: NLO in Powheg Method

Dart-yin A. Soh

Academia Sinica Taiwan and Sun Yat-sen University Supervised by Dr. P. Richardson & Prof. S.-C. Lee

September 23, 2010

- モニ → モト → モト → モー

 $2Q$

Vector Boson-Photon Production at LHC

Testing Standard Model and Search for New Physics:

- $W/Z\gamma$: golden channel to test SM at LHC, we will have enough data to do significant analysis ~ 1fb⁻¹ data for W_{γ} (early next year?).
- Anomalous WW γ coupling: CP-conserving $\kappa, \lambda, \tilde{\kappa}$ and $\tilde{\lambda}$?
- Are there $ZZ\gamma$ or $Z\gamma\gamma$ couplings? Gauge symmetry breaking!
- Agree well with the standard model at Tevatron, and how about at LHC
- Learn to deal with photon at NLO.

 $W\gamma$ production at DØ*:

KOD KOD KED KED ADD ADD

NLO Matching ME with PS!

- LHC: high energy scale and high luminosity: we need more precise NLO calculations
- NLO ME (BHO genarator[∗]): additional parton radiation + parton shower MC ⇒ double counting and invalid in IR phase space region
- Soft gluon radiation cut δ_s and photon isolation cut δ_c for quark radiation to cancel the IR divergence

Methods to match NLO matrix element with NLO parton shower: Implement Powheg in Herwig++

NLO Matrix Element in Catani-Seymour framework

• The NLO cross-section for $V\gamma$ matrix element:

 $d\sigma^{\bar{B}}=d\sigma^B_{V\gamma}+d\sigma^V_{V\gamma}+d\sigma^C_{V\gamma,g}+d\sigma^R_{\bar{q}\bar{q}\to V\gamma g}+d\sigma^C_{V\gamma,q}+\underbrace{d\sigma^R_{V\gamma(qg)_i}+d\sigma^R_{V(\gamma q)_f}}_{q\to\gamma}+d\sigma^C_{q\to\gamma}$

- IR singularities: gluon soft and q/q collinear. We have Catani-Seymour subtraction framework to cancel divergences: Both $\int d\Phi_{n+1} [\sigma^R_{V(\gamma g)} - \sigma^B \otimes V_{dipole}]$ and $\int d\Phi^B [\sigma^V_{V\gamma} + \sigma^C_{V\gamma} + \sigma^A_{V\gamma}]$ are finite.
- Mapping from Φ^B to Φ_{n+1} associated to each dipole $\mathcal{D}(z, u)$ that defined for an IB singular region α : soft (z) and collinear (u) an IR singular region α_i : soft (z) and collinear (u).
Multiply the weight factor with real radiation contri
- • Multiply the weight factor with real radiation contribution in α_r to cancel IR singularities with dipole and for Powheg: singularities with dipole and for Powheg:

 Ω

PDF & *Fragmentation Function Counterterm Remnants*

- The dipole $\mathcal{D}^{\alpha_r}(\bar{\Phi}^B, z, u) \sim |\mathcal{M}^B(\bar{\Phi}^B)|^2 \cdot P_{ij}(z, u)/(2p_i \cdot p_j)$ has singularity in dimensional reqularization ($\sim 1/\epsilon$) dimensional regularization ($\sim 1/\epsilon$)
- Consider dipoles $\mathcal{D}^{ag,b}$, $\mathcal{D}^{gq,\bar{q}}$, $\mathcal{D}^a_{\gamma q}$, $\mathcal{D}_{\gamma q,\gamma}$ (and $\mathcal{D}^{a\gamma}_{q}$, $\mathcal{D}^{a\gamma}_{\gamma}$?)
- After canceling the singularities the NLO PDF (and photon fragmentation function) remnants:
	- Gluon/quark PDF: standard, following C-S framework
	- Photon fragmentation function:

$$
\int_{n+1} d\sigma_{\gamma q}^{A} + d\sigma_{q \to \gamma}^{C, FF}
$$
\n
$$
= \int d[P_{\gamma}] \int_{0}^{1} \frac{dz}{z^{2-2\epsilon}} \int d\Phi_{P_{\gamma}}^{m-1} |M_{Vq}^{B}(\rho_{V}, P_{\gamma}/z)|^{2} \frac{\alpha Q_{c}^{2}}{2\pi} [P_{q\gamma}(z) \ln(\frac{2P_{\gamma} \cdot \tilde{\rho}_{V} u_{lim}(z)z}{\mu_{0}^{2}(1-z)}) + z - 13.26]
$$

where the non-perturbative photon fragmentation function fitted at ALEPH^{*}:

$$
D_{q\gamma}(z,\mu_{FS}) = \frac{\alpha Q_c^2}{2\pi} [P_{q\gamma}(z) \ln(\mu_{FS}^2/\mu_0^2) - P_{q\gamma}(z) \ln(1-z)^2 - 13.26]
$$

KORKAPRA ER ET AQO

KORKA EXTER LONG

Gluon and Quark QCD Radiation in Matrix Element

- 8 diagrams for real matrix element of $d\sigma_{q\bar{q}\to V\gamma g}^{R}$ and $d\sigma_{q(\bar{q})g\to V\gamma q'(\bar{q}')}^{R}$ respectively calculated numerically respectively, calculated numerically.
- Subtraction terms: initial emitter-initial spectator $(a, b = q, \overline{q})$ dipoles:

$$
\mathcal{D}^{ag,b} = \frac{8\pi\alpha_{S}}{2k_{a} \cdot k_{g}} \frac{C_{F}}{x_{ga,b}} \cdot \frac{1 + x_{ga,b}^{2}}{1 - x_{ga,b}} \cdot |\mathcal{M}_{V\gamma}^{B}(\bar{\Phi}^{B})|^{2}
$$

$$
\mathcal{D}^{gq,b} = \frac{8\pi\alpha_{S}}{2k_{g} \cdot k_{q}} \frac{T_{R}}{x_{gg,b}} \cdot [1 - 2x_{ag,b}(1 - x_{ag,b})] \cdot |\mathcal{M}_{V\gamma}^{B}(\bar{\Phi}^{B})|^{2}
$$

Calculation of these subtracted real terms is straight-wards:

$$
\left(\frac{R^{ag,b}}{\mathcal{D}^{qg,\bar{q}}+\mathcal{D}^{\bar{q}g,q}}-1\right)\mathcal{D}^{ag,b}\qquad\left(\frac{R^{gq,b}}{\mathcal{D}^{gq,b}+\mathcal{D}^a_{\gamma q}+\mathcal{D}_{\gamma q,\mathit{V}}+\cdots}-1\right)\mathcal{D}^{gq,b}
$$

• For $R^{gq,b}$ there is probability to produce soft photon that causes numerical instability, the region $E_y \leq \text{cut}.$ minKT_y cosh(y_y) should be cut out.

KORK ERKER ADAM ADAM KOR

Powheg Method in Catani-Seymour framework

- NLO accuracy matching parton shower with matrix element
- Smooth IR region (low p_T) to high p_T region, no phase-space slicing, no double counting
- Generate hardest radiation in specific singular region $\alpha_r = (ag, b)$ or (gq, ^b) every time, by Powheg Sudakov form factor:

$$
\Delta^{t_b}(\Phi^B, p_T) = \prod_{\alpha_r \in \{\alpha_r | t_b\}} exp\{\int \frac{[d\Phi_{rad}R^{\alpha_r}(\Phi_{n+1})\Theta(k_T(\Phi_{n+1}) - p_T)]_{\alpha_r}^{\bar{\Phi}_\beta^{\alpha_r} = \Phi^B}}{B^{t_b}(\Phi^B)}\}
$$

• The cross-section of Powheg:

$$
d\sigma = \sum_{t_b} d\Phi^B \bar{B}^{t_b}(\Phi^B) \{\Delta^{t_b}(\Phi^B, p_T^{\min}) + \sum_{\alpha_r} \frac{[d\Phi_{rad}\Theta(k_T - p_T^{\min})\Delta^{t_b}(\Phi^B, k_T)R(\Phi_{n+1})]_{\alpha_r}^{\bar{\Phi}_G^{\alpha_r} = \Phi^B}}{B^{t_b}(\Phi^B)}
$$

Generate Radiation Events: Highest-pT-bid Method

• Highest-pT-bid method in Powheg:

$$
\Big[\frac{\textstyle R\big(\Phi_{n+1}^{\alpha_r}\big)}{\textstyle \mathcal{B}^{f_b}(\Phi^B)}\Delta_{\alpha_r}^{f_b}(\Phi^B,k_T(\Phi_{n+1}))\big]^{\bar{\Phi}_{B}^{\alpha_r}=\Phi^B}d\Phi_{\textit{rad}}^{\alpha_r}
$$

and choose the radiation in α_r with highest p_T .

- Veto technique: estimate the upper bounding function of $(R/B)_U$ according to dipoles $\mathcal{D}^{ag,b}$ and $\mathcal{D}^{gq,b}$ to generate $k_\mathcal{T}$ in MC numerical calculation.
- The prefactors for upper bounding function should be estimated suitable to have good efficiency.
- New constraint of radiation rapidity y rather than constant bounds V_{max} , V_{min} is applied

$$
\mathbf{k}_T^2 \geq \frac{(1-\bar{x}_a)^2}{4\bar{x}_a} \equiv \kappa_{T0}^2 \left[\sqrt{\bar{x}_b} e^y \in \left(\frac{\kappa_{T0}}{\kappa_T} - \sqrt{\frac{\kappa_{T0}^2}{\kappa_T^2}} - 1, \frac{\kappa_{T0}}{\kappa_T} + \sqrt{\frac{\kappa_{T0}^2}{\kappa_T^2}} - 1 \right) \right]
$$
 where $\kappa_T^2 = \frac{p_T^2}{\hat{s}}$

QED Quark Real Radiation

Two schemes to deal with the bremsstrahlung component:

- QED parton shower scheme: model γ fragmentation with QED shower
- Non-perturbative effect of the fragmentation may come from hadronization
- We don't have soft photon problem.
- Since we model $d\sigma_{Vjet}^{Brem}$ with QED Powheg shower, we cannot separate ME with PS to compare ME results with BHO generator with PS to compare ME results with BHO generator.
- Try numerical result for Zγ at 14TeV with cuts: $p_{T,y} \ge 20 \text{GeV}, \quad |\eta_y| \le 2.7$:
Events number: 800,000 Total Cross-section: 46.78(±0.06)pb $\frac{800,000}{\text{Total Cross-section:}}$ 46.78(\pm 0.06)pb

QED Quark Real Radiation

Two schemes to deal with the bremsstrahlung component:

- Photon fragmentation function scheme: photon FF fitted from experiment
- Non-perturbative effect is fitted into photon FF (as we see before)
- But we have soft photon problem.
- Due to soft photon divergence we have to separate V_{γ} events from Vjet
- Try numerical result for $Z\gamma$ at 14TeV with cuts: $p_{T,\gamma} \ge 20 GeV$, $|\eta_{\gamma}| \le 2.7$, $z_{lim} = 0.5$ and $z_{cut} = 0.1$:
Events number: 800, 000

 $2Q$

Compare with Leading Order

The LO (LO matrix element + shower MC) numerical result for $Z\gamma$ at 14TeV with cuts: $p_{T,y} \ge 20 \text{GeV}, \quad |\eta_y| \le 2.7$:
Events number: 800,000 Tot Total Cross-section: $34.84(\pm 0.02)$ pb

The distribution of photon $p_{T,y}$ and rapidity y_y is
ptoton ptoton

K ロ ▶ K 伊 ▶ K ヨ ▶

KORK ERKER ADAM ADAM KOR

Photon Shower to Model Photon Fragmentation

- Inspired by Photon-jet and diphoton merging work[∗] , in this scheme the non-perturbative effect of photon fragmentation comes from photon shower.
- Reminding the cross-section of our process:

$$
d\sigma^B = \underbrace{d\sigma^B_{V\gamma} + d\sigma^V_{V\gamma} + d\sigma^C_{V\gamma} + d\sigma^R_{q\bar{q}\rightarrow V\gamma g} + d\sigma^R_{V\gamma(qg)_i} + d\sigma^R_{V\gamma q)}}_{d\sigma^{\bar{B}}_{V\gamma}} + \underbrace{d\sigma^R_{V\gamma qg)_i} + d\sigma^B_{V\gamma g}}_{d\sigma^{\bar{B}}_{qg\rightarrow V\gamma q}} + \underbrace{d\sigma^R_{V\gamma g}}_{d\sigma^{\bar{B}}_{V\gamma e}}
$$

• We treat QCD and QED parton shower democratically and model fragmentation component by QED parton shower,

$$
\begin{aligned} d\sigma=&d\Phi_B\bar{B}_{V\gamma}[\Delta_{V\gamma}(\Phi_B,p_T^{min})+\Delta_{V\gamma}(\Phi_B,k_T(\Phi_B,\Phi_R))\frac{R_{V\gamma g}(\Phi_B,\Phi_R)+R_{V\gamma(gg)_i}(\Phi_B,\Phi_R)}{B_{V\gamma}}] \\ &+d\Phi_B'B_{Vjet}[\Delta_{Vjet}(\Phi_B',p_T^{min})+\Delta_{Vjet}(\Phi_B',k_T(\Phi_B',\Phi_R'))\frac{R_{V(\gamma q)_f}(\Phi_B',\Phi_R')}{B_{Vjet}}] \end{aligned}
$$

KORKAPRA ER EL POLO

The Dipoles for QED Parton Shower Scheme

• Powheg QED shower to generate only one photon radiation and follow by QCD vetoed shower MC:

$$
\Delta^{\alpha_r}_{Vjet}(\Phi_B',k_T(\Phi_B',\Phi_{\text{rad},\gamma}'))=exp\{\int \frac{[d\Phi_{\text{rad},\gamma}R_{V(\gamma q)_{f}}^{\alpha_r}(\Phi_{n+1})\Theta(k_T(\Phi_{n+1})-p_T)]_{\alpha_r}^{\Phi_{\text{rad}}^{\gamma\alpha}=\Phi^{\prime\beta}}{B_{Vjet}(\Phi_B')}\}
$$

- Photon can be collinear with initial and final state quark: QED dipoles $\mathcal{D}_{qy}^{\mathsf{d}}$, $\mathcal{D}_{qy}^{\mathsf{d}}$, $\mathcal{D}_{qy}^{\mathsf{d}}$, $\mathcal{D}_{qy}^{\mathsf{d}}$. We don't need to consider: $\mathcal{D}_{qy}^{\mathsf{d}}$, $\mathcal{D}_{w\gamma,\mathsf{q}}$ since the massive *W* doesn't lead to any singularity and splitting function $\mathcal{L}_{q\gamma}$, $\mathcal{L}_{q\gamma}$, \mathcal{L}_{q} , \mathcal{L}_{V} . We don't held to consider $\mathcal{L}_{W_{V}}$, $\mathcal{L}_{W_{Y},q}$ since
the massive W doesn't lead to any singularity, and splitting function $P_{W_{Y}}(z)$ is ill-define. These QED dipoles are similar with QCD dipoles: only have color charge products replaced to electric charge products $\mathcal{T}_i\cdot\mathcal{T}_j\rightarrow\mathcal{Q}_i\cdot\mathcal{Q}_j$.
- Kinematics mapping: photon radiation momentum is calculated in Breit frame of $a - q$ or $a - V$ except $\mathcal{D}_{W_Y,a}$. It's a little complicated when massive V involves.

Photon Fragmentation Function Scheme: Identified Photon

- Photon fragmentation function $D_{\alpha y}(z, \mu_{FS})$ enters like PDF: treat photon as identified particle.
- We need dipoles $\mathcal{D}_{\gamma q}^{a(n)}$, $\mathcal{D}_{\gamma q, V}$ in this case. When we don't change \bar{k}_g in the manning the two dipoles is the same except electric charge: we need algebra $\mathcal{D}_{\gamma q}$, $\mathcal{D}_{\gamma q}$, in this case. When we don't charge:
the mapping, the two dipoles is the same except electric charge:

- The collinear limit is correct in integration of u but not soft photon limit $\Phi_{n+1}(z \to 0, u) \to \bar{\Phi}^B$.
In Powhoo the person
- In Powheg the p_T and y and the constraints on them is quite complicated, and the upper bound of R/B is estimated more carefully.
- We can also use the unidentified photon dipole $\mathcal{D}^a_{\alpha\alpha}$ that has correct soft photon limit. The collinear singularity is extracted by changing $\bar{\Phi}_{\text{rao}}$ variables to \bar{y} , \bar{v} and exchange the integration order:

$$
\overline{v}^{-1-\epsilon}=-\frac{\overline{v}_{cut}^{-\epsilon}}{\epsilon}\delta(\overline{v})+(\frac{1}{\overline{v}})_c-\epsilon(\frac{\ln \overline{v}}{\overline{v}})_c+O(\epsilon^2) \qquad (\frac{1}{\overline{v}})_c\rightarrow \int_0^1\frac{f(\overline{v})-f(0)\Theta(\overline{v}_{cut}-\overline{v})}{\overline{v}}d\overline{v}
$$

KORKA EXTER LONG

Soft Photon Problem

- When photon fraction z (or \bar{v}) \rightarrow 0, we reach soft photon singularity related to photon virtual loop.
- But photon FF $D_{\alpha y}(z, \mu_{FS})$ is fitted down to the cutoff z_{lim} , and is insensitive to small fraction z.
- Inspired by Wjet QED correction^{*}, we need to distinguish V_Y and Vjet all contribution R_+ in region $z \in (0, 1)$ events by imposing this cut, but real contribution $R_{\gamma q}$ in region $z \in (0, z_{lim})$ should be treated carefully so that no soft singularity.
- We can have two ways to do that:
	- Simply cut off $z \le z_{lim}$, both in photon FF and subtracted real piece R_{va} .
	- Cut off the photon FF remnant, but in real piece extract the remained collinear and soft divergences. Need to study how they are canceled with photon loop.
- To extract the remained collinear and soft divergences in subtracted real piece $R_{\gamma q}$ we can use the similar technic of $\bar v^{-1-\epsilon}$:

$$
\frac{1}{z^{1+2\epsilon}}=-\frac{z_{cut}^{-2\epsilon}}{2\epsilon}\delta(z)+(\frac{1}{z})_c-2\epsilon(\frac{\ln z}{z})_c+O(\epsilon^2)
$$

• The trial numerical result we have is attained by throwing away these divergences that guarantee canceled with photon loop by KLN theorem.

KOD KOD KED KED ADD ADD

Outlook

- We have to study more carefully how the photon soft divergences should be handled.
- Compare the two scheme of photon fragmentation and see which is better.
- Compare with the previous WGamma MC tools and experimental data at LHC.
- Anomalous $WW\gamma$ couplings and beyond SM
- Complete the process with W/Z leptonic decay.