Recent developments and results with POWHEG-BOX

Emanuele Re IPPP, Durham University

MCnet meeting

Cambridge, 23 September 2010

The POWHEG method

POWHEG is a method to merge NLO calculations with Parton Showers:

NLO

- √ reduced scale dependence
- \checkmark better description of high- p_{T} tails

PS

- √ Sudakov suppression in collinear regions
- √ parton → hadron corrections not needed
- It works generating the hardest-radiation according to:

$$d\sigma_{\text{POW}} = \bar{B}(\Phi_n) \ d\Phi_n \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

where

$$\bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] d\Phi_r$$

$$\Delta(\Phi_n; k_{\mathrm{T}}) = \exp\left\{ -\int \frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \theta(k_{\mathrm{T}}' - k_{\mathrm{T}}) d\Phi_r' \right\}$$

and by p_{T} -vetoing subsequent emissions, to avoid double-counting.

- Accuracy: inclusive observables @NLO, first hard emission with full tree level ME, LL
 resummation of collinear/soft logs, extra jets in the shower approximation.
- Formally it has the same accuracy of MC@NLO. Main differences:
 - ✓ Events are positive weighted.
 - √ It does not depend from the parton-shower algorithm used.
- when used with angular-ordered PS, a truncated shower should be included too.

Automation: the POWHEG-BOX framework

- Although it may look easy, the actual implementation of the algorithm is not straightforward.
- Until now processes (for hadron colliders) have been implemented:

• as standalone codes: several SM $2 \rightarrow 2$ processes [Nason et al.]

- within HERWIG++ (also with truncated shower): DY, V', $gg \rightarrow H$, HV, VV (+ others almost finished) [Hamilton, Richardson et al.]
- very recently also within SHERPA

[Krauss et al.]

- From February, the POWHEG-BOX package is available. Features:
 - automation of the POWHEG algorithm using the FKS subtraction scheme.
 - to include new processes, the needed inputs are:

$$d\Phi_n$$
, B, V, R, B_{jk} , $B^{\mu\nu}$

and the list of partonic subprocesses.

- They are typical inputs of a NLO calculation.
- Almost all can be obtained with other programs, like MadGraph.
- ullet It is likely that the standard way to include V will be the Binoth-LesHouches procedure.
- all previous implementations included in a single and already public framework, namely W, Z, heavy flavours, H via gluon and vector boson fusion, single-top (s-, tand Wt-channel).
- it produces LHE files, ready to be showered.
- structure: main directory + process folders.
- it was originally built to implement V+j!

[Alioli,Nason,Oleari,ER, in preparation]

- Samples of ~ 1.3 million of positive weighted events.
- Direct comparison with CDF data (PRL 100:102001 (2008) blessed data from CDF-QCD webpage): no K-factors, no parton-to-hadron corrections (not needed).
- Showered with PYTHIA 6.4.21, with Perugia 0 ($p_{\rm T}$ -ordered) and Tune A (Q^2 -ordered).

Comments:

- very good agreement.
- tune effect sizeable (and p_T -ordering gives better results).

Upper panel: PRL (1.7 ${\rm fb}^{-1}$). Lower panel: blessed data from CDF webpage (2.5 ${\rm fb}^{-1}$).

• 1st jet has full NLO+PS accuracy, 2nd jet has tree-level full ME accuracy.

Blessed plots from CDF webpage (2.37 fb⁻¹).

Results for Z+jets: comparison with D0 data

- Samples of ~ 1.3 million of positive weighted events.
- Direct comparison with D0 data (PLB 669:278 (2008) PLB 678:45 (2009) PLB 682:370 (2010)): no K-factors, no parton-to-hadron corrections (not needed).

With D0 cuts, non-perturbative corrections are smaller.

priet (3rd jet) [GeV]

Comments

- V+j is the first POWHEG implementation with a "divergent" Born (i.e. finite only after jet-defining algorithm).
- ullet Theoretical and technical issues are connected to this feature: effect of a generation cut in this context, behaviour of the program at small p_{T}^Z , folded integration... More details in a forthcoming publication.

Aim of this study: validate, to some extent, the implementation.

 \hookrightarrow a more thorough analysis should be performed with/by the experimental collaborations.

- Scale choice: we choose $\mu=p_{\mathrm{T}}^Z$ (UB kinematics). It seems the natural choice given the method we use.
- Scale uncertainty: varying $\mu \to \mu/2$ or $\mu \to 2\mu$ can be easily done.
- PDFs uncertainty: full study is feasible.
 - Quantify the effect of PDFs used in the PS is also possible. (useful?)

Comments

- V+j is the first POWHEG implementation with a "divergent" Born (i.e. finite only after jet-defining algorithm).
- ullet Theoretical and technical issues are connected to this feature: effect of a generation cut in this context, behaviour of the program at small p_{T}^Z , folded integration... More details in a forthcoming publication.

Aim of this study: validate, to some extent, the implementation.

 \hookrightarrow a more thorough analysis should be performed with/by the experimental collaborations.

- Scale choice: we choose $\mu=p_{\mathrm{T}}^Z$ (UB kinematics). It seems the natural choice given the method we use.
- Scale uncertainty: varying $\mu \to \mu/2$ or $\mu \to 2\mu$ can be easily done.
- PDFs uncertainty: full study is feasible.
 - Quantify the effect of PDFs used in the PS is also possible. (useful?)
- Th/Ex: Showers: comparison among different showers is easy, because of the method (and because a LHE file is available).
 - We will start using the PYTHIA 8 and HERWIG++ showers (improved features and more support with respect to fortran versions).
 - Need of a dedicated tune when POWHEG is used?
- Th: when using HERWIG(++), study truncated shower effects.

We would like to improve the communication between ${\tt POWHEG}$ and PS programs. Important for more complicated processes ?

[Alioli, Hamilton, Nason, Oleari, ER, preliminary]

- Dijets is the most complicated among the processes implemented until now.
- There are some technical aspects still to be understood...it is work in progress.
- Direct comparison with data: no K-factors, no parton-to-hadron corrections (not needed).
- Showered with PYTHIA.

Comments:

- although results are preliminary, and no effort at all to understand tuning effects has been done, very good agreement.
- recent interest in ATLAS: a public pre-release of the code is already available.

Conclusions and outlooks

Conclusions:

- POWHEG is now a well-established method to merge NLO calculations and PS's.
- Since February, the POWHEG-BOX package is available at

```
http://virgilio.mib.infn.it/~nason/POWHEG
```

It contains the old processes, new ones, and some technical improvements (mainly related to Exp requests and new implementations).

- Z+j is finished, tested and ready to be released. Code for W+j is also (almost) ready.
 Dijets is work in progress.
- For the first time, processes with jets at LO are simulated with NLO+PS accuracy.

Outlooks:

- We would like to improve the communication with PS programs.
 This can become important for specific issues (and likely also for more complicated processes).
- \bullet Merge events from Z and Z+j, to produce a single sample that covers properly "all" the kinematic range.
- MENLOPS.

 [Marek's talk]
- Other interesting processes...

Conclusions and outlooks

Conclusions:

- POWHEG is now a well-established method to merge NLO calculations and PS's.
- Since February, the POWHEG-BOX package is available at

```
http://virgilio.mib.infn.it/~nason/POWHEG
```

It contains the old processes, new ones, and some technical improvements (mainly related to Exp requests and new implementations).

- Z+j is finished, tested and ready to be released. Code for W+j is also (almost) ready.
 Dijets is work in progress.
- For the first time, processes with jets at LO are simulated with NLO+PS accuracy.

Outlooks:

- We would like to improve the communication with PS programs.
 This can become important for specific issues (and likely also for more complicated processes).
- ullet Merge events from Z and Z+j, to produce a single sample that covers properly "all" the kinematic range.
- MENLOPS. [Marek's talk]
- Other interesting processes...

Thanks for your attention!

POWHEG generation cut: 5 GeV. PDF set: CTEQ6M.

CDF

Midpoint algo, cone radius R=0.7, merging/splitting fraction 0.75.

$$Z(\to e^+e^-) + i$$
:

(h/p $\sim 10\%$)

66 GeV
$$< M_{ee} < 116$$
 GeV, $p_T^e > 25$ GeV, $|\eta^{e1}| < 1.0$, $|\eta^{e2}| < 1.0$ or $1.2 < |\eta^{e2}| < 2.8$, $|y_T^{\rm jet}| < 2.1$, $p_T^{\rm jet} > 30$ GeV, $\Delta R_{e, \, \rm iet} > 0.7$.

$$I = Z(\to \mu^+ \mu^-) + j$$

66 GeV
$$< M_{\mu\mu} < 116$$
 GeV, $p_T^{\mu} > 25$ GeV, $|\eta^{\mu}| < 1.0$,

$$|y^{\rm jet}| < 2.1, \quad p_T^{\rm jet} > 30 \; {\rm GeV}, \quad \Delta R_{\mu, \; {\rm jet}} > 0.7 \, . \label{eq:power_power}$$

D0

D0 Run II iterative seed-based cone algo, cone radius R=0.5, merging/splitting fraction 0.5.

(h/p $\sim 5\%$)

$$\begin{split} &65 \; \mathrm{GeV} < M_{ee} < 115 \; \mathrm{GeV}, \quad p_T^e > 25 \; \mathrm{GeV}, \quad |\eta^e| < 1.1 \; \mathrm{or} \; 1.5 < |\eta^e| < 2.5, \\ |y_{r}^{\mathrm{jet}}| < 2.5, \quad p_{r}^{\mathrm{jet}} > 20 \; \mathrm{GeV} \; . \end{split}$$

•
$$Z(\to \mu^+ \mu^-) + j$$
:

(h/p < 4%)

$$65~{\rm GeV} < M_{\mu\mu} < 115~{\rm GeV}, \quad p_T^\mu > 15~{\rm GeV}, \quad |\eta^\mu| < 1.7, \label{eq:property}$$

$$|y^{\text{jet}}| < 2.8, \quad p_T^{\text{jet}} > 20 \text{ GeV}, \quad \Delta R_{\mu, \text{ jet}} > 0.5.$$

Z+j: generation cut, folding.

U: generation cut, unweighted events. W: suppression factor, weighted events.

Backup

Dijets: coherence plot.

