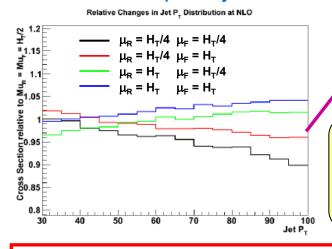
W/Z + jets in ATLAS

Pierre-Hugues Beauchemin

University of Oxford

On behalf of the ATLAS Collaboration

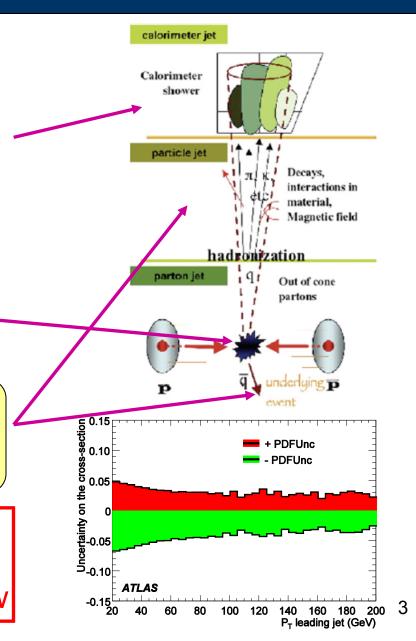

Standard Model Benchmark Workshop at the Tevatron and the LHC Fermilab, November 19th-20th, 2010

Scope of the presentation

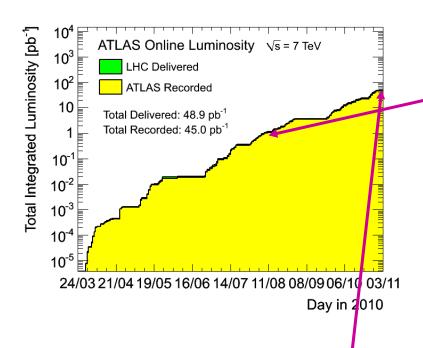
- Level of precision needed on W/Z+jets measurements for sensitivity to improvement in theoretical understanding of these processes
- State where W/Z+jets ATLAS measurements stand and show data to MC comparison of various observables
- Give a quick overview of how we tackle down some of the important systematics affecting W/Z+jets analyses
- Bring to your attention some issues we are facing in order to start useful discussions
 - Bring feed-back to the collaboration
 - Hopefully reach some consensus among the wide HEP community

W/Z+jets measurements

- ATLAS is in commissioning period:
 - Jet & E_T^{miss} resolution and calibration
 - Leptons energy scale and resolution
 - Trigger, Pile-up and Luminosity
- Crucial to study W/Z+jets events to understand our detector and tools
 - First priority with 2010 data



Perturbative QCD


Fragmentation
Hadronization
Underlying events

The key to reach a better understanding of the Standard Model is:

to keep systematic uncertainties low

Status of W/Z+jets analyses

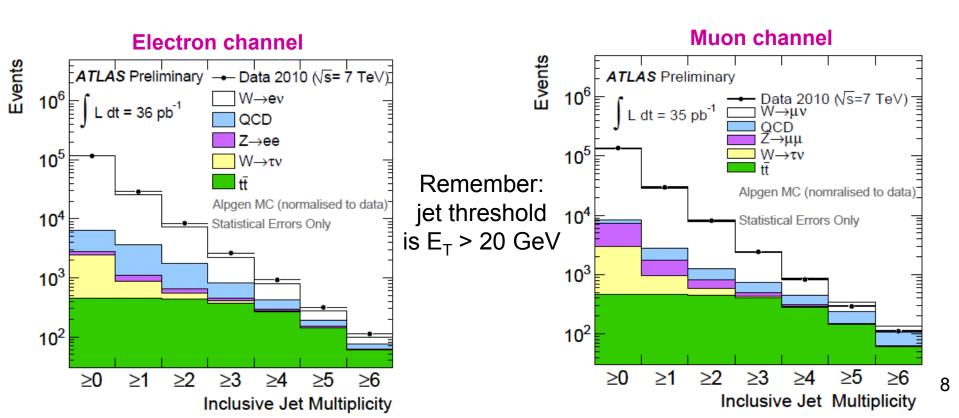
- We studied W+jets and Z+jets with 1pb⁻¹
 - Absolute cross sections
 - Relative to inclusive cross sections
 All possible ratios

Uncertainty on W+jets already dominated by systematic uncertainty

- MC-based or simplify correction factors
- Mostly conservative estimate of systematic uncertainties
- Paper under internal review
- Z+jets uncertainty : Δstats ① Δsyst
 - Public note under internal review
- Provide Comparison to LO and NLO (MCFM) calculations
- Update with 2010 full 45pb⁻¹ recorded dataset
 - Use more data-driven corrections

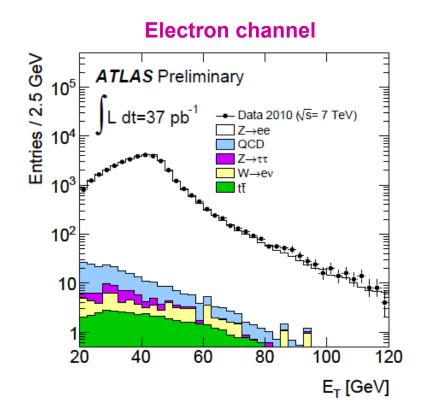
FIRST LOOK AT W/Z+JETS ATLAS DATA

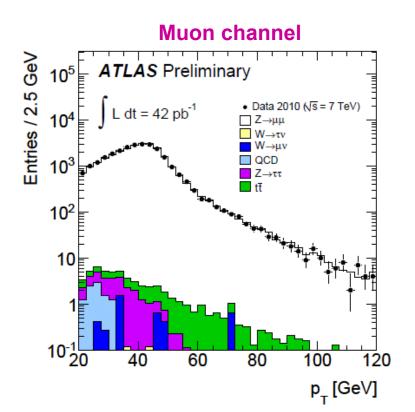
Data vs MC


- Use 35 to 42 pb⁻¹ (⊕11%) of data in the following distributions
 - Collected from 6 GeV to 15 GeV thresholds electron and muon triggers
- MC used in the following distributions
 - ALPGEN+HERWIG+JIMMY with CTEQ6L1 PDF for W/Z+jets events
 - Pythia dijet events (P_T > 15 GeV) with MRST2007LO* PDF for QCD
 - Use POWHEG with CTEQ6L1 PDF for ttbar.
 - Added <N>=2 pile-up events, reweighted to primary vertices observed in data
 - ATLAS MC09 tune are used
- MC events normalized to observed data candidates before jet selections
 - Relative normalization of MC samples to NLO cross sections except QCD

Selections

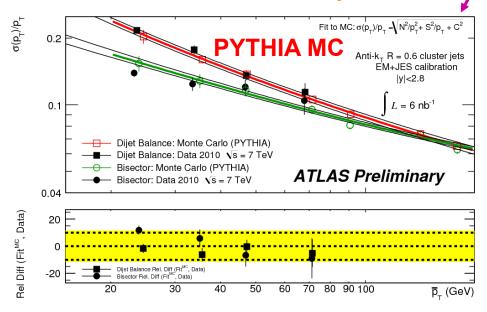
- Lepton kinematic:
 - Electron E_T^{clus} > 20 GeV and muon combined track P_T > 20 GeV with P_T^{MS} > 10 GeV
- Eta coverage:
 - $|\eta_{ele}|$ <2.47 excluding barrel to end-cap transition region (1.37< $|\eta_{ele}|$ <1.56), $|\eta_{muo}|$ <2.4
- Lepton quality requirements:
 - Tight requirements on electron cluster shape, track quality and matching
 - Muon cone 4 track isolation $\Sigma P_T^{ID}/P_T < 0.2$ and $|P_T^{ID} P_T^{MS}| < 15$ GeV
- Jet selections:
 - AntiKt4 jets with $P_T > 20$ GeV and $|\eta| < 2.8$
- ETmiss selections
 - E_T^{miss} > 25 GeV, computed from calibrated topoclusters and out-of-cluster energy
- ATLAS standard clean-up cuts are applied

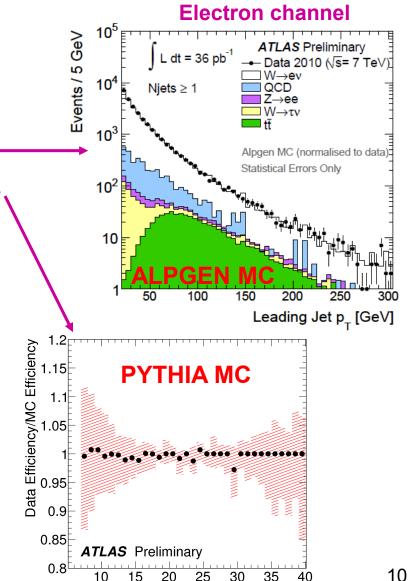

Jet Multiplicity


- QCD and top backgrounds significantly increase with the number of jets
 - Bigger effect at higher centre of mass energy
 - ⇒ Need to estimate these backgrounds precisely from data
- Other electroweak backgrounds can be estimated using MC ratios

Lepton Transverse Momentum

- MC describes well the detector effects on lepton reconstruction and resolution
- Can use MC to estimate electron and muon resolution effects on acceptance
 - For better precision, measure resolution in data before correction.

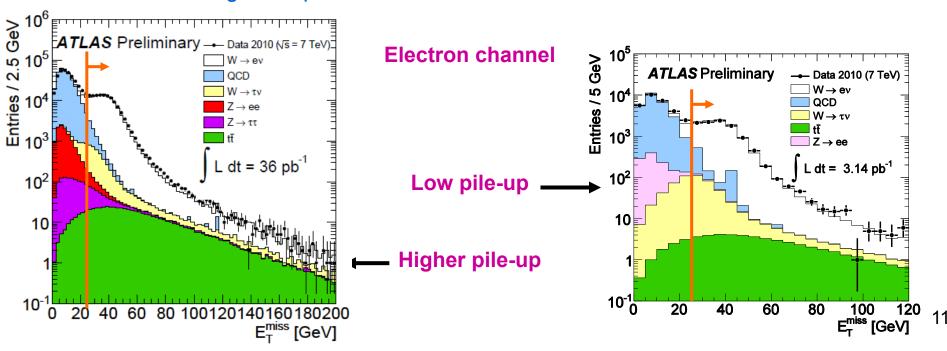




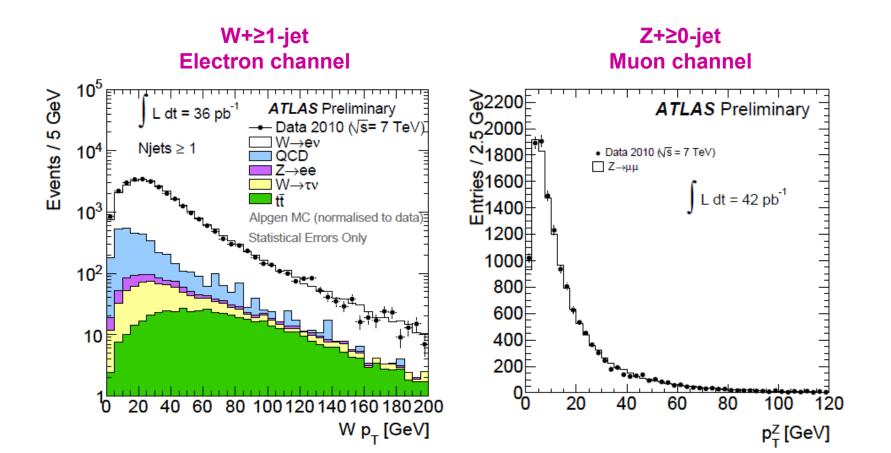
Jet Transverse Momentum

- Simulation are used to unfold detector effects in W/Z+jets measurements
- ATLAS data well modelled by simulation:
 - Jet transverse momentum in W+jets events
 - reconstruction efficiency in QCD dijet events.
 - jet energy resolution in QCD dijet events,

Will be measured on Z+jets events

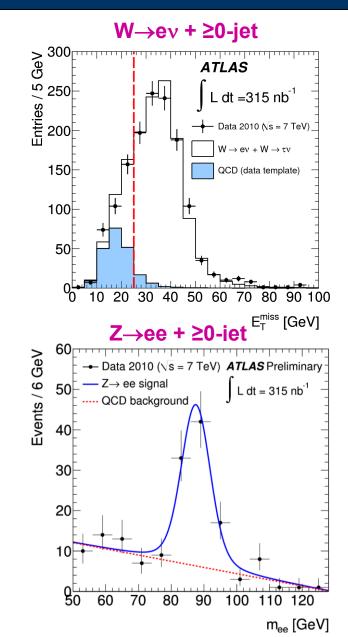


track jet p_ [GeV]

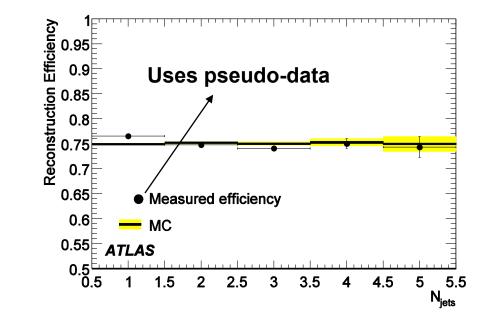

Missing E_T

- Reasonably good agreement between data and MC in the bulk of the signal region
 - some care must be made with missing E_⊤ model
 - · pile-up effects
- Use data to estimate:
 - Missing E_T selection acceptance correction
 - QCD background prediction

W/Z Transverse Momentum


- Good understanding of vector boson transverse momentum reconstructed from leptons over wide range of kinematics
 - Will be used to calibrate jets in W/Z+jets events
 - Useful to tune soft QCD effects in MC

TOWARD PRECISE W/Z+JETS MEASUREMENTS


Systematic: QCD background

- QCD bkg predictions proceed from the opposition of two big numbers
 - Dijet cross section
 - Fake rejection
 - ⇒ Hard to estimate from MC
- Template method (W→ev):
 - QCD E_T^{miss} from reversed electron selections, W E_T^{miss} from MC
 - Fit both templates to data
 - Integrate normalized QCD in signal region
 - ► f_{QCD}(W+≥1-jet) ~ 12%, Δf_{QCD}/f_{QCD} ~ 30%
- Z→ee QCD background estimate:
 - Direct fit to invariant mass
 - Number of same sign leptons under Z peak
 - F_{QCD}(Z+≥1-jet) ~ 3%, Δf_{QCD}/f_{QCD} ~ 30%

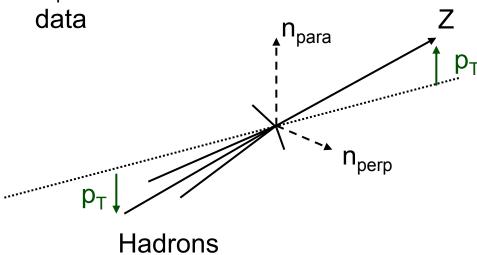
Lepton efficiency

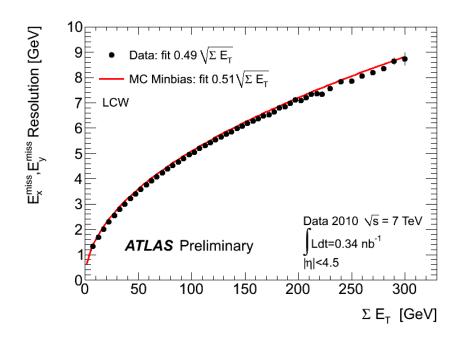
- Lepton efficiencies don't depend on the recoiling jet activity
 - Can use precise estimates from inclusive data samples
- Efficiencies are measured from MC in first 2010 analyses
 - Tag & Probe method and E_T^{miss} preselected events already show promising results

Trigger fully efficient in 2010 data

Parameter	$\delta C_W/C_W(\%)$	$\delta C_{\rm Z}/C_{\rm Z}(\%)$	C_{7}
Trigger efficiency	< 0.2	< 0.2	
Material effects, reconstruction and identification	5.6	8.8	\neg
Energy scale and resolution	3.3	1.9	- 1
$E_{\rm T}^{\rm miss}$ scale and resolution	2.0	-	- 1
Problematic regions in the calorimeter	1.4	2.7	_
Pile-up	0.5	0.2	_
Charge misidentification	0.5	0.5	
FSR modelling	0.3	0.3	-
Theoretical uncertainty (PDFs)	0.3	0.3	
Total uncertainty	7.0	9.4	

$$C_W = \varepsilon_{\text{event}}^W \cdot \alpha_{\text{reco}}^W \cdot \varepsilon_{\text{lep}}^W \cdot \varepsilon_{\text{trig}}^W$$

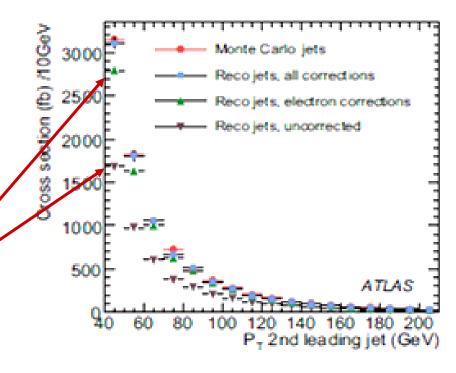

$$C_Z = \varepsilon_{\text{event}}^Z \cdot \alpha_{\text{reco}}^Z \cdot (\varepsilon_{\text{lep}}^Z)^2 \cdot [1 - (1 - \varepsilon_{\text{trig}}^Z)^2]$$


Eliminated from data-driven estimate of efficiencies

Systematics: E_Tmiss

- Need to correct for detector effects on E_T^{miss} selection acceptance
- Non-trivial systematic uncertainty
 - Jet energy scale and resolution
 - Pile-up
 - Material modelling
 - Non-cluster energy
 - $\Rightarrow \Delta A_{reco} \sim 2-4\%$ from MC estimate

E_T^{miss} resolution can be measured in

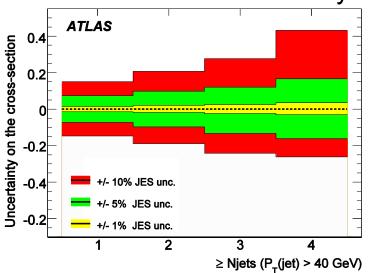


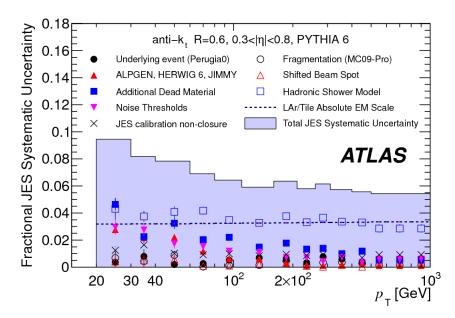
Data-driven estimate of correction factor to E_T^{miss} acceptance

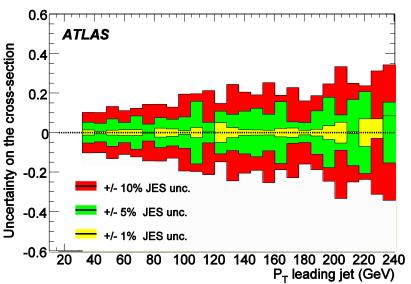
- Select Z+jets events
- Measure σ(E_T^{miss}) along n_{perp}
- Measure μ(E_T^{miss}) along n_{para}
- Apply gaussian smearing to true P_T^v

Systematics: detector unfolding

- Jet energy resolution and reconstruction well modelled in MC.
- To correct measurement up to hadron level, need to solve the reverse problem (unfolding)
 - involve other sources of uncertainties
 - Many different techniques on the market
 - → More complicated problem
- Smaller than lepton efficiency correction
 - Not a dominant source of systematics in 2010 measurements
 - Used simple bin-by-bin corrections
- Need to adopt:
 - good unfolding method,
 - generate high MC statistics,
 - identify all sources of systematics




Unfolding workshop at CERN


on 20/01/2011

Systematics: Jet Energy Scale

- ATLAS jets are calibrated from MC
 - Conservative uncertainty estimate
- Large impact of Jet Energy Scale uncertainty on cross sections
 - \triangle JES = 5% $\rightarrow \triangle \sigma_{tot} \sim 7\%$
 - Remove statistical effects in $\Delta \sigma$
 - Smaller effects on ratios
- Single particle measurement will constrain ∆JES in 2011 analyses

Systematics: summary and outlook

Dominant systematic uncertainties on W/Z+1-jet ~1pb⁻¹ analysis

Sources of systematics	Δσ(W+jets) 1 pb ⁻¹	$\Delta \sigma$ (Z+jets) 1 pb ⁻	target for 45pb ⁻¹ analyses
Jet Energy Scale	10%	10%	6-7%
Lepton A_{det} and ϵ	7%	10%	4-5%
Unfolding + jet E _⊤ resolution	3%	5%	3%
QCD background	6%	2%	1-3%
E _T ^{miss} A _{det}	3%	-	1-2%
Luminosity	11%	11%	5%

- Total of ~14/15% systematic uncertainty (excluding luminosity) compared to 3/11% statistical uncertainty
 - Already systematic dominated with ~1pb⁻¹ of data
 - Factor of ~2 reduction on systematic and luminosity uncertainties with full dataset
 - ⇒ Sensitivity to NLO effects
 - ⇒ Will soon start to get sensitivity beyond theoretical precision

Effects which were small and neglected must now be treated properly

⇒ Induce some discussions

DISCUSSION

Jet Energy Threshold

- Experimental criteria favour jet P_⊤ thresholds above 30 GeV:
 - Calibration below 20 GeV affected by jet reconstruction threshold
 - Jet energy scale uncertainty and pile-up dramatically increase below 30 GeV
 - Jet reconstruction efficiency quickly decreases below 30 GeV
- Theoretical prediction less robust for lower jet E_T:
 - Low P_T jets are more sensitive to soft QCD effects

Lower P_T jet thresholds imply higher scale uncertainty for theoretical predictions

Q: Prefer to reach as low jet P_T thresholds as possible (input to theorists) or keep thresholds higher (more robust comparisons)?

Q: What would be desirable jet thresholds in W/Z+jets physics?

Detector acceptance

- Lepton acceptance corrections depend on theoretical input (generators)
 - True level lepton P_T and η cuts, E_T^{miss} cut, mass selections, etc
- ⇒ Acceptance correction in measurements make it difficult for theorist to disentangle these effects to test potential improvements in their models
- Correcting for detector acceptance is needed to:
 - Combine or compare measurements made in muon and electron channels
 - Compare results from various experiments (detector independent results)

Q: Prefer to see publication with visible cross sections only or correct for a full acceptance cross sections?

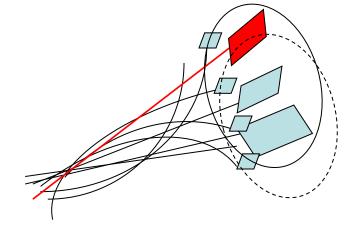
Q: How isolation should be treated?

So far, in ATLAS, we are working out both numbers, but publication preferences still on analysis to analysis basis.

QED Final State Radiation

- QED radiation, especially from FSR is:
 - different for electrons and muons
 - simulated with varying accuracy in different MC programs and kinematic regions
- Theory accuracy at the few-per-mille level for inclusive cross section,
 - ▶ this is *not true* in general for differential or exclusive distributions.

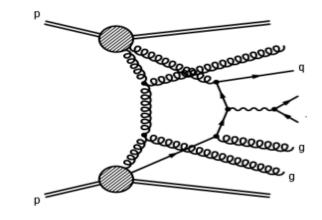
Final state electron	Pythia status code 1	Well defined physics final state	Input to unfolding is theory dependent
Electron at production vertex	Pythia status code 3	Compare electrons and muons	Measurement can't profit from new theory
"Dressed" electron	Final state + photon in cone around it	Physics final state close to vertex electron	Cone size is arbitrary


Q: what exactly should we measure and how should we confront it with theory? Correction before or after radiations? Both?

Q: How to assign reasonable systematic uncertainty on such effect?

Q: Should QED radiation be included in true jet clustering?

Jet-Electron overlap


- Electrons are reconstructed as jets in the calorimeter
 - Affect the energy response and reconstruction efficiency of close-by jets
- No ideal way to experimentally deal with this
 - Remove jets using ∆R matching
 - Small cone (~0.2)
 - Large cone (~0.5)
 - Small cone + event veto
 - Remove electron cluster from calorimeter and rerun jet algorithm
 - 4-vector subtraction

- Q: Which is the best approach for comparison to theory and with other experiments?
- Q: When a ΔR approach is used, should the decay products of vector boson be included in true jet clustering?

Correction to Parton level MC

- Unfolding brings jets from detector level to hadron level
- NLO fixed order calculation programs like MCFM don't include nonperturbative QCD effects for W/Z+parton(s) processes
 - Hadronization, underlying event
 - ⇒ No hadron level...
- K-factors obtained from NLO/LO MCFM prediction can't be applied to predictions involving parton shower

Q: Should we compute hadronization + underlying event correction factor from PYTHIA or HERWIG and apply them to MCFM predictions or it is preferable to leave predictions as they are?

Conclusion

- W/Z+jets physics allow to:
 - Study detector performance and validate measurement tools
 - ⇒ Improve systematic uncertainty on calibrations, efficiencies, unfolding, etc
 - Better understanding of higher order QCD corrections
 - Require small systematic uncertainty on the measurements

Provide crucial understanding of major background to many new physics searches

- ATLAS performed 1 pb⁻¹ W/Z+jets measurements
 - Good data to MC agreement
 - Set the ground for more precise future measurements
- Small effects will become important as the precision increases
 - Need already discussions with theorist and other experiments on how to provide the best handle on these effects
 - Eg: QED FSR, jet energy threshold, jet-electron overlap removal, etc
- Using the 2010 full dataset and the yet to come 2011 data:
 - improve jet, E_T^{miss} and lepton performances using Z+jets events
 - Start to study Heavy flavour

Some references

- First Z+jets MC study:
 - CSC book: arXiv:0901.0512 [hep-ex]
- Paper on the W/Z inclusive measurement
 - CERN-PH-EP-2010-037, arXiv:1010.2130 [hep-ex]
- Jet energy resolution and reconstruction efficiency studies
 - ATLAS-CONF-2010-054
- Jet energy scale uncertainty estimate
 - ATLAS-CONF-2010-056
- ETmiss performance studies
 - ATLAS-CONF-2010-057