B Production at the Tevatron

Matthew Jones

Purdue University/CDF/CMS

B Cross Section Measurements

- Inclusive leptons
 - Use p_T^{rel} to select b component
- Lepton + D
 - Naturally enhanced b component
- Inclusive J/ψ
 - Use lifetime to measure b fraction
- Exclusive B reconstruction
 - $B^+ \rightarrow J/\psi K^+$, $B^0_s \rightarrow J/\psi \phi$

Tevatron B Cross Section Measurements

CDF Phys. Rev. Lett. 68, 3403 (1992) 2.6 pb⁻¹ 4.2 pb⁻¹ CDF Phys. Rev. Lett. 71, 500 (1993) Phys. Rev. Lett. 74, 3548 (1995) 4.2 pb⁻¹ DØ 19.3 pb⁻¹ CDF Phys. Rev. Lett. 75, 1451 (1995) Run I Phys. Lett. B370, 239 (1996). DØ 6.6 pb⁻¹ CDF Phys. Rev. D53, 1051 (1996) 15.8 pb⁻¹ 5.2 pb⁻¹ Phys. Rev. Lett. 85, 5068 (2000). DØ Phys. Lett. B487, 264 (2000). 6.5 pb⁻¹ DØ 98 pb⁻¹ CDF Phys. Rev. D65, 052005 (2002). 0.63 pb⁻¹ CDF Phys. Rev. D66, 032002 (2002). CDF Phys. Rev. D71, 032001 (2005) 39.7 pb⁻¹ Run II 739 pb⁻¹ CDF Phys. Rev. D75, 012010 (2007). CDF Phys. Rev. D79, 092003 (2009). 83 pb⁻¹

 $B^+ \rightarrow J/\psi K^+$ $e+D^0$ $p_{T}^{rel}(\mu)$ $B^+ \rightarrow J/\psi K^+, B^0 \rightarrow J/\psi K^{*0}$ Inclusive J/ψ μ + sec vtx $p_{T}^{rel}(\mu)$ di-muon $p_{T}^{rel}(\mu)$ $B^+ \rightarrow J/\psi K^+$ μ + track, \sqrt{s} = 630 GeV Inclusive J/ψ $B^+ \rightarrow J/\psi K^+$ $\mu + D^0$

B Cross Section "crisis"?

B Cross Section Today

- Apparently very good agreement with QCD
- B cross section is now a very good benchmark for the Standard Model at the LHC.

What changed?

Common Issues

B decay products $\iff d\hat{\sigma}_b/dp_T$

- PDF's: MRSD₀ or MRSA'
- Acceptances calculated using exact NLO calculation by Nason, Dawson & Ellis.
- Quark mass, $m_b \&$ renormalization scale μ_0
- Peterson fragmentation with $\epsilon_b = 0.006$
- Hadronization fractions: f_u , f_d , f_s , f_{baryon}
- B decay models: QQ → EvtGen
- Decay tables?

Can't factor these into uncorrelated parts.

November 20, 2010

Non-perturbative inputs

- Fragmentation parameters were tuned to LEP data and LL Monte Carlo $\rightarrow \epsilon_p = 0.006$
- Correlated with parton shower and decay table

 - More soft gluon emission
 More B** states Smaller ϵ_p /harder $p_T(B)$
- NNLO calculations/parton shower
 - co-linear gluon emission shouldn't be counted twice.
- Consistent treatments: CTEQ6M + FONLL + matched fragmentation functions...

JHEP05(1998)007 / JHEP07(2004)033

Newer Measurements: $H_{b} \rightarrow J/\psi X$

- $\int L dt \sim 40 \text{ pb}^{-1}$
- Di-muon trigger,
 - $p_{T}(\mu) > 1.5 \text{ GeV/c}$
 - No lower limit on $p_{T}(J/\psi)$
- b fraction measured using pseudo-proper decay time
 - Positive for b decays
- Efficiencies measured using a 4 GeV/c single-muon trigger.

$$\sigma(p\overline{p}
ightarrow b, |y| < 0.6)$$
 =

$$\sigma_{\mathsf{FONLL}}(p\overline{p} \to b, |y|)$$

November 20, 2010

Standard Model Benchmarks at the Tevatron and the LHC

Phys. Rev. D71, 032001 (2005).

Exclusive Final States

 $\sigma_{B^+}(p_T > 6 \text{ GeV}/c, |y| < 1) = 2.4 \pm 0.4 \ \mu \text{b}$

- Consistent with FONLL calculation (2.1±0.6 μb).
- Generally consistent with inclusive J/ψ result.
- Are there systematic differences?

November 20, 2010

Newer Measurements: $B \rightarrow \mu + D$

Phys. Rev. Lett. 71, 500 (1993).

Phys. Rev. D79, 092003 (2009).

12 GeV electron trigger

4 GeV muon + displaced track trigger

 ϵ measured using J/ ψ sample collected using single 8 GeV muon trigger.

correctionconstraint $c\overline{c}$ backgrounddistribution of d (D) $b\overline{b}$ $b\overline{b}$ $b\overline{b}$ $b\overline{b}$ $b\overline{b}$ $b\overline{c}$ $b\overline{c}$ </

Cross Section Summary

November 20, 2010

Run I Quarkonia Cross Sections

- Excess observed in both prompt J/ ψ and Υ cross sections
 - Other production mechanisms, eg, color octet models

Polarization measurements

Quarkonia Cross Sections

¹S₀

(b

(d)

- NRQCD: Expansion in both α_s and v
- k_T factorization: initial gluon virtuality → spin density matrix.
- Others...

(a)

(a)

(c)

Analysis of Quarkonia

- DØ J/ψ production:
 - <u>Phys. Lett. B370, 239 (1996).</u> (Inclusive J/ψ)
 - <u>Phys. Rev. Lett. 82, 35 (1999).</u> (forward J/ψ)
- CDF J/ ψ and ψ (2S) production:
 - Phys. Rev. Lett. 79, 572 (1997). (J/ ψ and ψ (2S) cross section)
 - <u>Phys. Rev. D71, 032001 (2005).</u> (Inclusive J/ψ)
 - <u>Phys. Rev. D66, 092001 (2002).</u> (forward J/ψ)
 - <u>Phys. Rev. D80, 031103 (2009).</u> (ψ(2S) cross section)
 - Phys. Rev. Lett. 99, 132001 (2007). (J/ ψ and ψ (2S) polarization)
- DØ Υ(1S) cross section, polarization
 - <u>Phys. Rev. Lett. 94, 232001 (2005).</u> (Υ(1S) cross section)
 - Phys. Rev. Lett. 100, 049902 (2008). (with updated integrated luminosity)
 - Phys. Rev. Lett. 101, 182004 (2008). (polarization)
- CDF Υ(1S) production
 - <u>Phys. Rev. Lett. 75, 4358 (1995).</u> (Υ(ns) cross section)
 - Phys. Rev. Lett. 84, 2094 (2000). $(\chi_{bJ}(nP) \rightarrow \Upsilon(1S)\gamma)$
 - <u>Phys. Rev. Lett. 88, 161802 (2002).</u> (Υ(ns) cross section and polarization)

Cross Sections

$$\frac{d^2\sigma}{dp_T dy} \mathsf{Br}_{\mu^+\mu^-} = \frac{f_{\mathsf{prompt}} N}{(\mathcal{L}dt) \Delta p_T \Delta y \ \mathcal{A} \ \epsilon}$$

- Prompt fraction of J/ψ estimated from lifetime information.
 - Efficiency determined
 from J/ψ samples
 obtained with single
 muon triggers
- Acceptance includes assumed polarization:

 $\frac{dN}{d\cos\theta*}\sim\mathbf{1}+\alpha\cos^2\theta^*$

Consider -1 < α < 1 for systematics

November 20, 2010

Updated $\psi(2S)$ Cross Section

- No known feed-down from χ_c states.
- Acceptance assumes almost no polarization, motivated by ψ(2S) measurement:

 $\alpha = 0.01 \pm 0.13$

- Prompt and B components separated using proper decay time.
- Consistent with Run I results...

Upsilon Cross Section

 Systematic uncertainty from polarization evaluated by fitting or varying distribution of cos θ^{*}

$$\frac{d\sigma_{\Upsilon(1S)}}{dy} = \begin{cases} 684 \pm 24 \text{ pb} & \text{CDF} \\ 628 \pm 75 \text{ pb} & \text{DØ} \end{cases}$$

Shapes of dσ/dp_T also agree.

CDF Polarization Measurements

- Low backgrounds, characterized by sidebands
- Requires prompt/secondary classification
- Divide sample into 6 p_T bins

- Higher backgrounds with properties that evolve with M_{µµ}
- No secondary component
- Analyze Υ(1S) polarization in 8 p_T bins

J/ψ and ψ(2S) Polarization

$$S = \left(\frac{d_0(\mu^+)}{\sigma_{d_0}(\mu^+)}\right)^2 + \left(\frac{d_0(\mu^-)}{\sigma_{d_0}(\mu^-)}\right)^2$$

$$ct = \frac{ML_{xy}}{p_T}$$

• S ~ χ^2 distribution

Positive for B decays

November 20, 2010

CDF Polarization Fit

- Background constrained using sidebands.
- Simultaneous fit to extract α_{fit}:
 - Developed for optimal use of low statistics in Run I.

November 20, 2010

CDF J/ψ Polarization

- Not much polarization...
- Maybe becomes slightly longitudinal at high p_T.
- Inconsistent with Run I result...

• What about the $\Upsilon(1S)$?

November 20, 2010

DØY Polarization Measurement

- Same fitting procedure used in Run I and in J/ψ analysis.
- Significant difference between transverse and longitudinal templates in most p_T bins.
- Generally consistent with no polarization at low p_{T.}

November 20, 2010

November 20, 2010

Maybe not even wrong...

- The current situation is rather murky... are we missing something obvious? Pietro Faccioli emphasizes basic quantum mechanics...
- Back to the fundamentals:

- General state for a spin-1 particle:

$$|\psi\rangle = a_{+1}|1, +1\rangle + a_0|1, 0\rangle + a_{-1}|1, -1\rangle$$

- Angular distribution when decaying to
$$\mu^{+}\mu^{-}$$
:
$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\phi} \sin^{2}\theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi$$
$$\lambda_{\theta} = \frac{1 - 3|a_{0}|^{2}}{1 + |a_{0}|^{2}} \qquad \qquad \lambda_{\theta\phi} = \frac{\sqrt{2}\operatorname{Re}(a_{0}^{*}a_{+1} - a_{0}^{*}a_{-1})}{1 + |a_{0}|^{2}}$$
$$\lambda_{\phi} = \frac{2\operatorname{Re} a_{+1}^{*}a_{-1}}{1 + |a_{0}|^{2}}$$

Just transverse is not enough

But an arbitrary rotation will preserve the transverse/longitudinal shape...

Need for full polarization analysis

- The templates for dN/dΩ are more complicated than simply 1 ± cos²θ.
- Need to measure λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ simultaneously.
- Invariant under rotations:

Fundamental Benchmarks

- B Cross sections:
 - Good agreement with current FONLL calculations
 - Demonstrate a non-trivial understanding of the non-perturbative ingredients
 - Remarkable achievement!
- Quarkonia cross sections:
 - Consistent total cross section measurements
 - Inconsistent polarization measurements
 - Several models compatible with measured cross section
 - Polarization predictions are now an essential test
 - Working on re-analysis using full angular distributions
 - Won't change cross sections by factors of 20...
 - Could influence the interpretation of polarization measurements
 - Awaiting valuable cross checks from the LHC experiments.

Backup Material

November 20, 2010

Early Cross Section Measurements

- DØ measurement using 6.6 pb⁻¹.
- No magnetic field in central tracker.
- f_b ~ 35% from muon impact parameters.
- External inputs:
 - $MRSD_0 + MNR p_T spectra$
 - Peterson fragmentation
 - − Assume B \rightarrow J/ψ K, J/ψ K^{*}

$$\begin{split} \sigma(p\overline{p} \rightarrow b + X) &= 2.25 \pm 0.60 \pm 1.01 \; \mu \mathrm{b} \\ p_T^{\mathsf{min}} &= 9.9 \; \mathrm{GeV}/c, \; |y_b| < 1 \end{split}$$

Phys. Lett. B370, 239 (1996)

An Early Clue...

from renormalization scale, μ_0 .

More or less consistent with NLO QCD...

b-quark cross section, integrated above p_T^{min} , *obtained from a model* relating $p_T(b)$ to $p_T(\mu)$.

Exhibits typical "excess" over NLO QCD.

Efficiencies

- CDF treatment:
 - Track finding efficiency obtained by embedding hits from a simulated track in events from collision data and seeing if the track is reconstructed: ε_{track}(p_T>1.5 GeV/c) ~ 0.9961
 - Other efficiencies calculated using ``tag and probe'' method: given that a muon track is reconstructed calculate the probability that it satisfies additional criteria:

•
$$\varepsilon_{L1}(p_T)$$
, $\varepsilon_{L2}(p_T)$, ε_{L3} , ε_{muon} , $\varepsilon_{\chi 2}$

 $- p_T$ independent efficiency:

$$\epsilon_{rec} = \epsilon_{L3}^2 \epsilon_{track}^2 \epsilon_{muon}^2 \epsilon_{z_0} \epsilon_{\Delta z_0}$$

 $- p_T$ dependent efficiencies:

$$1/w_i = \epsilon_{L1}(\mu_1)\epsilon_{L1}(\mu_2)\epsilon_{\chi^2}(\mu_1)\epsilon_{\chi^2}(\mu_2) \cdot \mathcal{A}(p_T, y)$$

Note: there was no L2 muon trigger for this data taking period.

November 20, 2010

Polarization Templates

• S-channel helicity frame:

Include detector acceptance and event selection:

November 20, 2010

