

Minimum Bias Physics at LHCb

S. Miglioranzi (CERN)

Standard Model Benchmarks at the Tevatron and LHC Fermilab, 19-20 November

LHCb

- single arm forward spectrometer (15 mrad < θ < 300 (250) mrad)
- designed to make precision measurement of CP violation and other rare phenomena in the b system at the LHC
- trigger and reconstruct many different B decay modes to make independent and complementary measurements
- forward production of bb, correlated

LHCb - VELO and RICH

- contains the pp-collision point
- precise determination of primary and secondary vertices
- 21 silicon μ-strip station with r-φ geometry
- 2 extra pile-up stations per half
 - recognition of multiple interaction collisions at the trigger level
- pitch= 40-100 µm
- 172k channels
- 2 retractable detector halves:
 - ~8 mm from beam when closed
 - retracted by 30mm during injection

- two Cherenkov detectors (RICH) for charged hadron identification
- excellent $\pi/K/p$ separation for momenta in range 2-100 GeV/c
- two gaseous and one aerogel radiators

LHCb data

- 6.8 µb⁻¹ at √s= 0.9 TeV in 2009
- 0.31 nb⁻¹ at √s= 0.9 TeV in 2010
- 38 pb⁻¹ at √s= 7 TeV in 2010 have been recorded (~90% of delivered lumi)

Integrated LHCb efficiency breakdown

Physics reaches at LHCb with collected data include so far:

- inclusive distributions
- strangeness production
- first charm results
- Onia $(J/\psi, \Upsilon, \chi_c, ...)$
- first b results
- W,Z production

Angular coverage comparison

ATLAS

η: -8 -6 -4 -2 0 2 4 6 8 ALICE n: -8 -6 -4 -2 0 2 4 6 8 CMS&TOTEM

LHCb

First LHCb public results – light hadron production – exploiting the interest for measurements in the forward region where production models were extrapolated not only in energy but also in rapidity

LHCb is the only experiment fully instrumented In the forward direction

strengths of LHCb:

- hadron PID
- tracking, PID and calorimetry in full acceptance

Pythia tunings

Results will be shown compared to Perugia0 tune (Phys.Rev.D82:074018,2010) and LHCb current tune

LHAPDF-CTEQL61 Included process types: 11-13 28 53 68 91-95 421-439 461-479

LHCb tune (PYTHIA 6.421)

Particles are decayed through EVTGEN

Non-default	in LHCb tune	parp(85)	0.33
ckin(41)	3.0	parp(86)	0.66
mstp(2)	2	parp(91)	1.0
mstp(33)	3	parp(149)	0.02
mstp(128)	2	parp(150)	0.085
mstp(81)	21	parj(11)	0.5
mstp(82)	3	parj(12)	0.4
mstp(52)	2	parj(13)	0.79
mstp(51)	10042	parj(14)	0.0
mstp(142)	2	parj(15)	0.018
parp(67)	1.0	parj(16)	0.054
parp(82)	4.28	parj(17)	0.131
parp(89)	14000	mstj(26)	0
parp(90)	0.238	parj(33)	0.4

Studies with first data

First Physics at LHCb:

production measurements

antiparticle-particle ratios baryon-meson ratio

 \checkmark K⁰_s cross sections at 0.9 TeV

\rightarrow	Λ/Λ , p/p	ratios	at 0.9	and 7	TeV
\rightarrow	Λ/K_{s}^{0}	ratio	at 0.9	and 7	TeV

From theory point of view:

- hadronization still not well understood: at present different phenomenological models available but no theory can describe this process consistently
- since strange quarks are no valence quarks in the initial state:

- good test for fragmentation models

- highest CM energy so far 1.96TeV at Tevatron (but ppbar, in pp 200 GeV)
- models have been tuned to SPS and Tevatron data (central rapidity and p_T >0.4GeV). LHCb can cover forward rapidity and provide measurements down to p_T ~0
- antiparticle-particle ratio helps to understand:
 - which partons carry the baryon number
 - the baryon number flow in inelastic collisions
- baryon-meson ratio good test of fragmentation models

$\overline{\Lambda}/\Lambda$ LHCb coverage

http://home.fnal.gov/~skands/leshouches-plots

Studies with first data

First Physics at LHCb:

production measurements

antiparticle-particle ratios baryon-meson ratio

 \longrightarrow K⁰_s cross sections at 0.9 TeV

 $\longrightarrow \overline{\Lambda}/\Lambda$, p/p ratios at 0.9 and 7 TeV $\longrightarrow \overline{\Lambda}/K_{s}^{0}$ ratio at 0.9 and 7 TeV

From experimental point of view:

- minimal requirements for the detector: only tracking and vertexing are needed for V⁰s
- simple minimum bias trigger
- momentum calibration cross-checks with mass distributions
- no PID required (except for proton results)
- preparation for more complex analyses (B_d -> J/ψ K_s, b-baryons, multistrange baryons...)

Prompt K⁰_s production

Physics Letter B 693 (2010) pp. 69-80 arXiv:1008.3105v2

 K_{s}^{0} cross-section is the first LHCb measurement to contribute to the understanding and tuning of hadronisation/fragmentation models.

- 6.8 µb⁻¹ recorded in the 2009 pilot run
- K_{s}^{0} reconstructed through: $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$
- high purity selection without requiring particle identification (ideal first measurement for LHCb)
- main systematic contributions:

-luminosity (~12%)-tracking efficiencies (~10%)

Prompt K⁰_s production – luminosity measurement

Direct measurement of luminosity based on knowledge of beam profiles:

Integrated luminosity = $(6.8 \pm 1.0) \mu b-1$ 15% tot uncertainty dominated by beam currents

in latest measurements improved to ~5%

currents	widths	positions	angles
12%	5%	2%	1%

Prompt K⁰_s production - tracking

Mass distributions of all selected K⁰_s candidates

during 2009 pilot run beam size and crossing angles larger than design -> VELO not fully closed -> only limited coverage for long tracks compared to nominal configuration

- signal extraction from fit
- cross-sections evaluated separately from both downstream and long track selection (consistent results)
- results not statistically independent → downstream-track measurements taken (except lowest p_T bins 2.5<y<3.0 from long-track selection)

Prompt K⁰_s production

Measurements in bins of y and p_T and compared to LHCb MC (with and w/o diffraction) and Perugia0 Tuning

• data favor harder p_T spectrum than MC predictions

Prompt K⁰_s production

Comparing with other experiments...

• K⁰_s cross-section not measured before at 0.9 TeV

• LHCb results reach larger rapidity values and lower p_T than previous experiments

Prompt K⁰_s systematics

Source of Uncertainty	Errors
signal extraction	1-5%
beam-gas subtraction	<1%
MC statistics	1-5%
track finding	6-17%
selection	4%
trigger	2%
p_T and y shape within bin	0-20%
diffraction modeling	0-1%
non-prompt contamination	<1%
material interaction	<1%
luminosity	15%
Total systematic uncertainty	17-31%

V⁰ ratio measurements

Interesting physics probed by strange particle ratios:

• Baryon Number Transport $(\overline{\Lambda} / \Lambda)$

direct measurement of the baryon transport from the interacting beams to the fragmented final states.

Various models of baryon number transport exist, measurements in the LHCb kinematic range could provide new info to distinguish between models.

• Baryon Suppression ($\overline{\Lambda}$ / K⁰_s)

very sensitive test of fragmentation models since final states (meson and antibaryon) different from initial state (two baryons).

• Both ratios very important input for tuning of fragmentation models

V⁰ ratio measurements

Measurement of $\overline{\Lambda}/\Lambda$ and $\overline{\Lambda}/K_{s}^{0}$ ratios using prompt particles with 2010 data:

• √s = 0.9 TeV → 0.3 nb⁻¹

- √s = 7 TeV → 0.2 nb⁻¹
- $\overline{\Lambda}$, Λ and K_{s}^{0} identified through: $\Lambda \rightarrow p \pi^{-}, \overline{\Lambda} \rightarrow \overline{p} \pi^{+}, K_{s}^{0} \rightarrow \pi^{+} \pi^{-}$
- no PID info used, to get rid of cross feeds between K⁰_s and ∧, the other resonance mass hypotheses were tried. If invariant mass range around the other resonance mass → candidate discarded.

Efficiencies from MC for prompt, non-diffractive events

Ratios benefit from reduced systematic uncertainties (errors cancel out, absolute luminosity not required): $\sigma(\overline{\Lambda}/\Lambda) \sim 2\%$, $\sigma(\overline{\Lambda}/K_{s}^{0}) \sim 2-12\%$

17

LHCb preliminary

LHCb-CONF-2010-011

Strange Baryons Production

Baryon number conservation requires the destroyed beam particles in inelastic non-diffractive collisions must be balanced by creation of baryons elsewhere. How close baryon and anti-baryon are produced in the phase space?

Evidence for energy dependence of production ratios

Baryon Number Transport

Measured $n(\overline{\Lambda})/n(\Lambda)$ ratio:

- clear energy dependence seen
- measurements lie significantly under MC prediction at 0.9TeV
- reasonable agreement at 7 TeV where the ratio is expected to be close to unity

Baryon Number Transport

Comparing rapidity bins at the same distance from the beam:

 $y_1 = y_2 + \ln(E_{b1}/E_{b2})$

allows to probe scaling violations

Study of Baryon suppression

Measured $\overline{\Lambda}$ / K_{s}^{0} production ratio

- significant differences data/MC
- forward region not well described by models
- sensitive observable for MC tuning

 $\mathbf{21}$

V⁰ ratio systematics

Source of Uncertainty	Errors
MC modeling of diffractive contributions	1%
MC modeling of non-prompt contribution	1%
Variation of selection cuts	1%
$\Lambda - \overline{\Lambda}$ production and absorbtion along flight path	1%
Transverse polarization	-
p – p interactions in the detector	-
Azimuthal modeling of the acceptance	-
Total systematic uncertainty	2%

- different polarities data were analysed independently (good agreement)
- combined in a single measurement

Studies p/p ratio

- measurement of \overline{p}/p using prompt particles with 2010 data:
 - $\sqrt{s} = 0.9 \text{TeV} \rightarrow 0.3 \text{nb}^{-1}$ (15 Mevts)
 - $\sqrt{s} = 7 \text{TeV} \rightarrow 0.2 \text{nb}^{-1}$ (13 Mevts)
- largely independent systematics w.r.t. Λ/Λ
- RICH Particle Identification DLL cut ^(*): DLL(A-B) = $\Delta \ln \mathcal{L}_{AB} = \ln(\mathcal{L}_A/\mathcal{L}_B)$ used to discriminate between hadron species
- PID calibrated in data:
 - π and p from $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ and $\Lambda \rightarrow p \pi$

 K from Φ→K⁺K⁻ with one track identified by RICH and the other one left unbiased for PID measurement

• high purity p(p) sample of 90-95% obtained over full LHCb acceptance

(*) the DLL(A-B) function tends to have +ve values for correctly A-type identified particles and –ve for correctly B-type identified particles.

LHCb preliminary LHCb-CONF-2010-009

Baryon number transport p/p

- enough statistics to make differential studies in p_T
- uncertainty dominated by finite statistics of RICH calibration sample

• similar energy dependence as in $\overline{\Lambda / \Lambda}$ case observed

reasonable agreement with Perugia0

Baryon number transport p/p

Ratio measured as a function of rapidity loss: $\Delta y = y_{beam} - y_{baryon}$

- scaling behaviour observed
- possibly slightly p_T dependence
- consistent with previous measurements

p/p ratio systematics

Systematic contributions (given for $p_T > 1.2 \text{ GeV}$, 3.< $\eta < 3.5 \text{ at } \sqrt{s} = 7 \text{TeV}$)

Source of Uncertainty	Err.
PID	3.6%
Ghost tracks	1%
MC detector description	<1%
Material interactions cross sections	<1%
Magnet Polarity	1.4%
Tracking Asymmetries	<2%
Non-prompt contamination	<1%
Crossing angle	<1%
Tot Systematic Uncertainty	4%
Tot Statistical Uncertainty	1%
Tot Uncertainty	4%

Summary

LHCb has produced Minimum Bias results in a unique rapidity and transverse momentum range

- prompt K_{s}^{0} absolute production cross section at $\sqrt{s} = 0.9$ TeV presented:
 - p_T spectra tend to be "harder" than PYTHIA predictions
 - extended measurement range to lower \textbf{p}_{T} and new y range
- prompt $\overline{\Lambda} / \Lambda$ ratio at $\sqrt{s} = 0.9$ TeV
 - tends to be lower than PYTHIA Perugia0 and LHCb tune, lower at larger y
- prompt $\overline{\Lambda} / \Lambda$ ratio at $\sqrt{s} = 7$ TeV

- in fair agreement with PYTHIA LHCb tune, quite flat vs. y

- prompt \overline{p} / p ratios at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV
 - show similar energy dependence as Λ / Λ
- prompt $\overline{\Lambda}$ / K⁰_s ratio at \sqrt{s} = 0.9TeV and \sqrt{s} = 7TeV

- baryon suppression in hadronization is lower than predicted

More Minimum Bias studies are on the way (multiplicities, inclusive ϕ ...)

Prompt K⁰_s production: selection

- 6.8 μ b⁻¹ recorded in the 2009 pilot run
- K_s^0 reconstructed through: $K_s^0 \rightarrow \pi^+\pi^-$
- differential cross section quoted for $0 < p_T < 1.6 \text{ GeV/c}$, 2.5<y<4
- VELO partially open (15mm)
- CALO trigger with 2x2 cluster with E_t >240MeV in HCAL and SPD hits >2

Variable	Requirement		
Downstream-track selection			
Each π -track momentum	> 2 GeV/c		
Each π -track transverse momentum	$> 0.05 { m ~GeV}/c$		
Each track fit χ^2/ndf	< 25		
Distance of closest approach of each π -track to the z axis	> 3 mm		
$K_{ m S}^0$ decay vertex fit $\chi^2/{ m ndf}$	< 25		
z of $K_{\rm S}^0$ decay vertex	< 2200 mm		
z of pseudo-PV	< 150 mm		
$\cos heta_{ m pointing}$	> 0.99995		
$K^0_{ m S}$ proper time $(c au)$	> 5 mm		
Long-track selection			
z of associated PV	< 200 mm		
Each track fit χ^2/ndf	< 25		
$K_{ m S}^0$ decay vertex $\chi^2/{ m ndf}$	< 100		
$z(K_{ m S}^0)-z({ m PV})$	> 0 mm		
Variable ν related to impact parameters	> 2		

Table 2: $K_{\rm S}^0 \rightarrow \pi^+\pi^-$ selection requirements.

Prompt K⁰_s production

cross sections in bins of p_T and y of the K_S: ٠

Trigger efficiency

from reweighted MC reproducing track multiplicity in data

Reconstruction + selection efficiency from MC

(includes acceptance, secondary interactions, branching ratio, non-prompt production, p_{T} and y resolution, ...)

beam-gas method

 $N_{pp-coll} = N_{bb} - \beta N_{be}$

 $\beta = 0.916 \pm 0.019$

V⁰ ratio measurements

LHCb preliminary

Measurement of $\overline{\Lambda}/\Lambda$ and $\overline{\Lambda}/K_{s}^{0}$ ratios using prompt particles with 2010 data:

- $\sqrt{s} = 0.9 \text{ TeV} \rightarrow 0.3 \text{ nb}^{-1}$ • $\sqrt{s} = 7 \text{ TeV} \rightarrow 0.2 \text{ nb}^{-1}$
- $\overline{\Lambda}$, Λ and K^0_s identified through: $\Lambda \rightarrow p \pi^-$, $\overline{\Lambda} \rightarrow \overline{p} \pi^+$, $K^0_s \rightarrow \pi^+ \pi^-$
- microbias trigger
- Long tracks used (χ 2/ndof<20)
- >= 1 PV, cut on mother pointing angle to PV, cut on mother IP χ 2 w.r.t. PV
- no PID info used, to get rid of cross feeds between K⁰_s and Λ, the other resonance mass hypotheses were tried. If invariant mass range around the other resonance mass candidate discarded.
- high-purity K_s^0 and Λ selection based on a combination of impact parameters (IP):

 $v = \log(IP_1) + \log(IP_2) - \log(IP_{\vee 0})$

Efficiencies from MC for prompt, non-diffractive events

Ratios benefit from reduced systematic uncertainties (errors cancel out, absolute luminosity not required): $\sigma(\Lambda/\Lambda) \sim 2\%$, $\sigma(\Lambda/K_s^0) \sim 2-12\%$

Studies p/p ratio

- measurement of \overline{p}/p using prompt particles with 2010 data:
 - $\sqrt{s} = 0.9 \text{TeV} \rightarrow 0.3 \text{nb}^{-1}$ (15 Mevts)
 - $\sqrt{s} = 7 \text{TeV} \rightarrow 0.2 \text{nb}^{-1}$ (13 Mevts)
- microBias trigger used (random L0.and.at least 1 VELO track segment in HLT1)
- >=1PV, |z_{PV}| <200mm
- Long tracks used (χ2/ndof<10)
- IP quality cut, P>5GeV/c
- RICH Particle Identification DLL cut (*): DLL(A-B) = $\Delta \ln \mathcal{L}_{AB} = \ln(\mathcal{L}_A/\mathcal{L}_B)$ used to discriminate between hadron species
- PID calibrated in data:
 - π and p from $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ and $\Lambda \rightarrow p \pi$
 - K from Φ→K⁺K⁻ with one track identified by RICH and the other one left unbiased for PID measurement

• high purity $p(\overline{p})$ sample of 90-95% obtained over full LHCb acceptance

(*) the DLL(A-B) function tends to have +ve values for correctly A-type identified particles and –ve for correctly B-type identified particles.

Vertex Measurement

 $\sigma(z) \sim 50[150] \ \mu m$ for the Primary [Secondary] Vertices $\sigma(IP) \sim 14 + \frac{35}{p_T(GeV)} \ \mu m$

 $\sigma(t) \sim 40 \text{ fs on b-hadrons decay times}$

Energy measurement

 $\sigma_E/E \simeq 9\%/\sqrt{E} \oplus 0.8\%$ (ECAL) $\sigma_E/E \simeq 69\%/\sqrt{E} \oplus 9\%$ (HCAL)

Tracking

 $\epsilon = 95\%$ for p > 5 GeV $\sigma(p)/p \sim 0.4\%$ $\sigma(b$ -hadrons mass) ~ 14 MeV

Particle Identification

 $\varepsilon(K) \sim 95\%$ at 5% of π/K mis-id. $\varepsilon(\mu) \sim 93\%$ at 1% of $\pi, K/\mu$ mis-id.

Trigger

L0 hardware: 40 MHz \Rightarrow 1 MHz \rightarrow Information from Muon Stations, Calorimeters and VELO \rightarrow High $p_T e, \mu, \gamma$

- HLT High Level Trigger: 1 MHz \Rightarrow 2 kHz \rightarrow software
 - \rightarrow full detector information

Study of other particle ratios...

- strong energy dependence observed also for other particle types
- important input for MC tuning

