CMS Minimum Bias Results

Mayda M. Velasco CTEQ-2010 Nov. 19, 2010

Outline...

\rightarrow Low-p_T Physics

- Particle correlations
- Particle Production in MB events
- Underlying Event studies
- Forward/Diffractive results
- ➔ Conclusion

Early measurements of Pseudorapidity and Charge Multiplicity Production @ CMS

First CMS physics results

Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC

Sep. 21st , 2010

arXiv:1009.4122 → JHEP 1009:091, 2010

Angular Correlation Technique

Short-Range Correlation ($\Delta \eta < 2$) vsEnergyK_{eff}: # of correlated particles

0.4

PYTHIA, default PYTHIA, D6T

10²

10³

√s (GeV)

10⁴

PYTHIA describes energy dependence
→ Matches cluster width δ
→ Underestimates the cluster size K_{eff}

Mean & High Multiplicity pp collisions

(b) MinBias, 1.0GeV/c<p_<3.0GeV/c

Independent detector, independent reconstruction!

Interpreting "Ridge" requires more work

CMS pp 7TeV, N>110

Observed long-range, near-side correlations in high multiplicity events

- Signal grows with multiplicity
- Effect maximal in 1< p_T < 3 GeV
- Not reproduced by generators
- Resembles effects seen in heavy-ion collisions at high energies

Interpretation:

Multi-jet correlations Jet-Jet color connections Jet-proton remnant color connections Jet-remnant connections + medium

Jet

Complementary data from Heavy Ions runs

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

1st Heavy lons collision already started at the LHC!

Observation of diffraction in protonproton collisions at 900 and 2360 GeV

CMS PAS FWD-10-001

Diffraction in pp Collisions

Sketch of single-diffractive event:

 Σ E related to the momentum loss of the scattered proton. One expects a (diffractive) peak at low values of this variable ($\sigma \sim 1/\xi$).

N.B. All plots are uncorrected

Observation of Single Diffraction at CMS 900 GeV (10 μ b⁻¹) 2360 GeV (0.4 μ b⁻¹)

Measurement of forward energy flow

FWD-10-002

Forward Energy flow: sensitive to parton radiation and MPI

Energy flow increases from 0.9TeV to 7 TeV by factor ~ 3

Energy flow in dijet events significantly larger than in minbias

Strange Particle Production

Ks, Λ & Ξ CMS PAS QCD-10-007

Proper interaction for Anti-Proton needed in Physics list before ratios of Λ /Anti- Λ , etc can be reported

Strange Hadron Spectra (GeV/c)⁻¹ CMS preliminary (1/N) dN / dp_ (GeV/c) (GeV/c) CMS preliminary CMS preliminary 10 50 √s = 7 TeV √s = 7 TeV 10 √s = 7 TeV (1/N) dN / dp s = 900 GeV √s = 900 GeV dp / Np (N/1) 10-2 √s = 900 GeV 40 10⁻² 10⁻³ 30 10⁻³ 104 20 10" 10-5 10 10* 10⁻⁶ 9 8 0 6 10 0 8 9 K⁰_S p₇ [GeV/c] 2 ۸ô p_T [GeV/c] Ξp_T (GeV)

• All generators underestimate the amount of **Strange Particles** produces at both 0.9 and 7 TeV

Comparison with previous experiments & event Generator Data

Simulation

	$\sqrt{s} = 0.9 \text{TeV}$				$\sqrt{s} = 7 \text{TeV}$			
Particle	Т	n	$< p_T >_{\text{Tsallis}}$	$< p_T >_{true}$	Т	n	$< p_T >_{\text{Tsallis}}$	$< p_T >_{true}$
	(GeV)		(GeV/c)	(GeV/c)	(GeV)		(GeV/c)	(GeV/c)
РҮТНІА 6 (D6T) K ⁰	0.156	7.41	0.581	0.579	0.183	5.71	0.753	0.754
PYTHIA 8 K _S	0.141	6.93	0.550	0.550	0.171	5.67	0.713	0.711
РҮТНІА 6 (РО) К ⁰	0.150	6.73	0.585	0.582	0.168	5.39	0.730	0.726
PYTHIA 6 (D6T) Λ^0	0.152	6.07	0.756	0.756	0.216	5.11	1.064	1.069
PYTHIA $8 \Lambda^0$	0.112	5.04	0.666	0.669	0.168	4.68	0.933	0.928
pythia 6 (P0) Λ^0	0.124	5.33	0.695	0.694	0.163	4.64	0.921	0.910
PYTHIA 6 (D6T) Ξ^-	0.123	4.90	0.759	0.763	0.213	4.70	1.167	1.162

Simulation & Data

Particle	$\frac{\frac{dN}{dy}}{\frac{dN}{dy}} _{y=0}(77)$	TeV) TeV)	$\frac{\frac{dN}{dy} _{y=0}(\text{PYTHIA D6T})}{\frac{dN}{dy} _{y=0}(\text{Data})}$			
	Data	pythia D6T	0.9 TeV	7 TeV		
K _S ⁰	$1.71 \pm 0.02 \pm 0.20$	1.41	$0.87 \pm 0.01 \pm 0.07$	$0.72 \pm 0.01 \pm 0.06$		
Λ^{0}	$1.65 \pm 0.04 \pm 0.26$	1.48	$0.60 \pm 0.01 \pm 0.07$	$0.54 \pm 0.01 \pm 0.06$		
Ξ^{+}	$2.09 \pm 0.09 \pm 0.27$	1.47	$0.48 \pm 0.05 \pm 0.09$	$0.33 \pm 0.02 \pm 0.05$	1	

Charge Multiplicities

CMS PAS QCD-10-004

KNO Scaling and C_q Moments

• Probability distributions $P_n(s)$ of producing *n* particles at collision energy *s* :

$$P_n(s) = rac{1}{\langle n(s)
angle} \psiigg(rac{n}{\langle n(s)
angle}igg)$$

• Scaling function:

$$\Psi(z) = \langle n \rangle P_n$$
, with $z = n/\langle n \rangle$

• Moments:

$$C_q = \langle n^q \rangle / \langle n \rangle^q$$

C_q Energy Dependence - Scaling Violations ➔ Correlations between particles produced

Charged particle transverse momentum spectra

Jet Triggered: CMS PAS QCD-10-008 Minimum Bias: CMS PAPER QCD-10-006 (PRL)

A robust prediction of pQCD hard processes is the power-law scaling of the inclusive invariant cross section with $x_T \equiv 2p_T/\sqrt{s}$ \Rightarrow Expected to be valid for $p_T > 2GeV$

Comparison of Differential Yield with Generators including the low p_T

- The gray band corresponds to statistical plus systematic errors in quadrature.
- Pythia 8 in reasonable agreement
- Jet Triggered data note: CMS PAS QCD-10-008

Underlying Event

PAS-QCD-10-001 PAS-QCD-10-010

Low-pT QCD results 6 months later....

New well tune physics Generators provided by theorist like Rick Fields, *et.al*

Conclusion

- CMS working well
- Low pT measurements already showing unexpected results
- Latest PYTHIA Tunes incorporating our early measurements are better
- More to come...

Bibliography

- The underlying event in proton proton collisions at 900 GeV, CMS PAS QCD-10-001
- <u>Two-particle correlations and cluster properties from two-particle angular correlations in</u> <u>p+p collisions at sqrt(s) = 0.9, 2.36TeV and 7TeV, CMS PAS QCD-10-002</u>
- Measurement of Bose-Einstein correlations with first CMS data, CMS PAS QCD-10-003
- <u>Charged particle multiplicities at sqrt(s)=0.9, 2.36 and 7 TeV, CMS PAS QCD-10-004</u>
- <u>Underlying Event with Jet Area at 900 GeV, CMS PAS QCD-10-005</u>
- <u>Transverse-momentum and pseudorapidity distributions of charged hadrons in pp</u> <u>collisions at sqrt(s) = 7 TeV, CMS PAS QCD-10-006</u>
- <u>Strange Particle Production in pp Collisions at sqrt(s) = 0.9 and 7 TeV, CMS PAS QCD-</u> <u>10-007</u>
- <u>Charged hadron transverse momentum spectra in pp collisions, CMS PAS QCD-10-008</u>
- Measurement of the Underlying Event Activity at the LHC with sqrts=7 TeV, CMS PAS QCD-10-010