Jet Production at CMS

Leonard Apanasevich University of Illinois at Chicago

on behalf of the CMS collaboration

Outline

- Physics at the LHC
- Jet Reconstruction and Performance
 - Clustering Algorithms
 - Jet Energy Scale and Resolution
- Jet Measurements
 - Jet Shapes
 - Inclusive Jet Cross Section
 - Dijet Mass Spectrum and Ratio
 - Dijet Angular Distribution
 - Dijet Angular Decorrelation
 - 3-jet to 2-jet ratio
 - Event Shapes

18 Nov 2010

UIC

Jet Physics at the LHC

- proton)

(proton -

CTEQ 2010

- Total cross section ~100-120 mb
- The goal at startup is to re-establish the standard model (i.e., QCD, SM candles) in the LHC energy regime
 - σ(pT>250 GeV)
 - 100x higher than Tevatron
 - Electroweak
 - 10x higher than Tevatron
 - Тор

18 Nov 2010

UIC

- 100x higher than Tevatron
- Jet measurements at LHC are important:
 - confront pQCD at the TeV scale
 - constrain PDFs
 - probe a_s
 - important backgrounds for SUSY and BSM searches
 - sensitive to new physics
 - quark substructure, excited quarks, dijet resonances, etc.
- QCD processes are not statistics limited!

High PT

The CMS Detector

D

High PT

Jet Reconstruction at CMS C High PT

- Calorimeter jets
 - Energy depositions in the ECAL and HCAL used to form CaloJets
- JetPlusTrack
 - Calorimeter jets corrected with tracker information
- Particle Flow jets
 - Reconstructed particles using information from all sub-detectors; separate calibration per particle type
- Track jets
 - Uses track input only
- Jet algorithms:
 - Default for p-p collisions is Anti- k_T
 - R=0.5, 0.7
 - Also studied SISCone, KT, and Iterative Cone (used in the trigger)

Particle Flow

- Particle Flow is an event reconstruction technique that aims to reconstruct and identify all stable particles produced in a proton-proton collision, through the optimal combination of all CMS sub-detectors
 - Identify different groups of particles and calibrate their response individually
 - Charged hadron momenta are taken before modification by the magnetic field
- Particle flow is rapidly becoming the default reconstruction algorithm at CMS

High PT

Jet Energy Calibration at CMS C High PT

- Factorized approach (like Tevatron):
 - offset correction (removes pile-up and noise contribution)
 - relative correction (flattens the jet response in pseudorapidity)
 - absolute correction (flattens the jet response in p_T)
- Optional corrections:
 - electromagnetic fraction dependence
 - flavor dependence
 - parton level

18 Nov 2010

UIC

- underlying event
- Jet energy calibration from Monte Carlo truth
 - preliminary in-situ measurements with γ+jet pT balancing and of single particle response, indicate that the jet energy scale is known to better than 10%
 - Update! JES uncertainties now ~3-6% (JME-10-010)

lnl

QCD Jet Measurements

Jet Shapes

QCD-10-014

High PT

- Jet shapes probe the transition between hard pQCD and soft gluon radiation
- Sensitive to the quark/gluon jet mixture
- Test of parton shower event generators at non-perturbative levels
- Useful for jet algorithm development and tuning

18 Nov 2010

UIC

Charged particle multiplicity

 δR^2 distribution

At low jet transverse momentum (20< p_T <50 GeV) the measured jets are a few percent broader than predicted by HERWIG++ and narrower than predicted by PYTHIA D6T

CTEQ 2010

Inclusive Jet Cross Section

QCD-10-011

High PT

18 Nov 2010

UIC

Inclusive Jet Cross Section

High PT

12

- Main systematic uncertanties. for inclusive jet cross section, as for most other jet analyses: jet energy scale (5-10%), jet resolutions (10%) and luminosity (11%)
- From theory side dominant systematic uncertainties are parton distributions (PDF), nonperturbative corrections (NP) and factorization/renormalization scales (µR,F)

Dijet Mass Distribution

- Good agreement between data and CMS simulation of QCD using PYTHIA
- Search for narrow resonances decaying to dijets with natural width less than experimental resolution
- Use a model-independent resonance search to obtain mass exclusion limits at the 95% confidence level for a variety of resonance models

	Excluded Regions (TeV)
String Resonance	0.50-2.50
Excited Quark	0.50-1.58
Axigluon/Coloron	0.50-1.17, 1.47-1.52
E6 Diquark	0.50-0.58, 0.97-1.08, 1.45-1.60

(arXiv:1010.0203 accepted by PRL)

UIC¹⁸ Nov 2010

CTEQ 2010

13

Dijet Centrality Ratio

- The dijet ratio is a simple measure of dijet angular distributions
 - N(|n|<0.7)/N(0.7<|n|<1.3)
 - Sensitive to contact interactions and dijet resonances
- Dijet ratio has low systematic uncertainties and is a precision test of QCD at startup
- Set limit on contact interaction scale Λ with frequentist inspired CL_S method
- We **exclude Λ<4.0 TeV** at 95% CL
- Expected exclusion of $\Lambda < 2.9$ TeV

(<u>arXiv:1010.4439</u> accepted by PRL)

Dijet Angular Distributions

/N dN/dx_{diec}

Angular distributions sensitive to new physics $d\sigma/d\chi_{dijet}$ 0.14

d

Tevatron limits $\Lambda > 2.8-3$ TeV

√s = 7 TeV

95% C.L. limit

CMS Preliminary

w/o systematics ±10% JES ± 2% 🛪 ml JES

10⁻¹

1

Luminosity [1/pb]

10

- Insensitive to PDFs
- Reduced sensitivity to detector effects

[TeV]

2

10

18 Nov 2010

UIC

High PT

QCD-10-015

18 Nov 2010

CTEQ 2010

- Early measurement shown to be useful for tuning phenomenological parameters (ISR) in MC event generators
- Systematic uncertainties dominated by jet energy scale and jet energy resolution effects

CTEQ 2010

3-Jet to 2-Jet Ratio

- Insensitive to PDFs,
 reduced luminosity, JEC
 uncertainty
- Plateau sensitive to strong coupling
- Good agreement found with PYTHIA and Madgraph within uncertainties

High PT

Event Shapes

- Event shapes provide geometric information about energy flow in hadronic events
- Useful for tuning of MC models for nonperturbative effects
- Robust against experimental uncertainties

- LHC has performed amazingly well in 2010
- Already we have a rich variety of results from the high-p_T QCD program at CMS
- Many analyses are already beginning to exceed the Tevatron reach
- We are on our way towards many new and interesting physics results
- New physics might be around the corner!

Backup Slides

Inclusive Jet Cross Section

