Heavy quark production, a first after-LHC assessment

Standard Model benchamrks at the Tevatron and the LHC, Fermilab, Nov 19-20 2010

> Michelangelo L. Mangano CERN PH-TH

Few words about quarkonium

???

???

???

???

[Gong, Wang; 07]

NLO Singlet contributions

Campbell, Maltoni, Tramontano

• New channels at α_s^4 strongly affect the polarization parameter α (polar asymmetry in the c.m. helicity frame) • Polarization is longitudinal component at NLO • Large correction may arise at order α_s^5 because new channels with a different p_T scaling open up at that order. One of them is the gluon fragmentation $g^* \rightarrow {}^3S_1^{[1]}$...

"NNLO" Singlet contributions

Artoisenet, Campbell, Lansberg, Maltoni, Tramontano

- IR cutoff logarithmic dependence expected to disappear at large p_T, but sizable at moderate p_T.
- This gives a large uncertainty on the normalization, the shape is rather stable though.

Material on this slide from Fabio Maltoni's talk at "Hard Probes 2010", Eilat

Reconciling J/ψ production at HERA, RHIC, Tevatron, and LHC with NRQCD factorization at next-to-leading order

Mathias Butenschön, Bernd A. Kniehl

arXiv:1009.5662v1

Fit inputs

Predicctions

Conclusions

HP2010

- Several are the mechanisms for quarkonium production in hadron collisions and not all understood at the same level of accuracy.
- In all cases, QCD (or effective theories matched onto QCD) are (or should be) used, so descriptions are first-principle based.
- A large and significant number of theoretical results have been published in the last 2-3 years which have brought NRQCD to the NLO level and more and allow global analyses.
- In a nutshell, consensus has grown on the fact that higher order corrections in v (e.g. octets) and/or in α_S (e.g. NNLO*) are essential to give a consistent description of the present data.
- Predictions and MC tools for the LHC are constantly improved and we are looking forward to detailed new studies...!

HP2010, Eilat Oct. 13

6

Fabio Maltoni

Open Q: by and large good agreement of data and NLO

This agreement is one of the most significant results from LHC-2010

Why is it not trivial?

The dynamical regime of the LHC is theoretically more challenging

- large S => small x
- large rapidity (ALICE, LHCb)
 - o access to even smaller x
 - o small pt, sensitivity to higher-twist effects

Nason, Dawson, Ellis Collins, R.K.Ellis Ball, Ellis Catani Ciafaloni Hautmann

....

.... still, some inconsistency and disagreement needs to be sorted out

.... still, some inconsistency and disagreement needs to be sorted out

.... still, some inconsistency and disagreement needs to be sorted out

Kinematic reach

Initial state composition:

gg ----- gg ·---- qqbar

Upper curves: p_T>0

Lower curves: p_T>12 GeV

- - great stability of the y distribution vs scale/mass variations
 - scale systematics fully correlated in y, so y shape is robust
 - scale dependence at the $\pm 30\%$ level dominates over mass-dependence for $p_T \gtrsim m_b$
 - PDF systematics affects the shape of the y distribution well beyond the effects of scale variations, once y>4 => PDF sensitivity

non-pQCD issues

$b \rightarrow H_b$ fragmentation fractions:

Species	Z ^o fraction (%)	Tevatron fraction (%)
B-	40.3±0.9	33.3±3.0
B ⁰	40.3±0.9	33.3±3.0
Bs	10.4±0.9	12.1±1.5
Λ_{b}	9.1±1.5	21.4±6.8

- Needs clarification!
- To the least it points to not unexpected deviations from factorization
- In view of the CP non-invariance of the initial state, and of the forward kinematics of LHCb, each individual fraction will have to be measured very accurately

Example

$$gg \rightarrow \mathbf{b} \Lambda_{\mathbf{b}}$$
$$gg \rightarrow \mathbf{b} \overline{\Lambda}_{\mathbf{b}}$$

If $A(y) \neq 0 \Rightarrow N(B) \neq N(Bbar) \Rightarrow apparent CP violation!$

Modeling

Thanks to P.Skands, T.Sjostrand, D.Grellsheid for providing these predictions

Modeling

Thanks to P.Skands, T.Sjostrand, D.Grellsheid for providing these predictions

A(y) predictions from various MC codes and tunings:

• Very broad range of "predictions", no robust benchmark

- Strong dependence on modeling of perturbative part: more/less gluon radiation will reduce/increase the color-coupling of the b with the proton diquark fragment
- Expect correlation with the modeling of strange and charmed baryons
- Looking forward to LHCb data!