

Fabrizio Palla INFN - Pisa on behalf of the CMS Collaboration

The LHC accelerator

- CMS integrated around 43 pb⁻¹ by the end of the 2010 pp run with an overall data taking efficiency better than 90%
- LHC instantaneous pp luminosity already reached 2x10³² cm⁻²s⁻¹
 → CMS trigger paths frequently upgraded, to keep a tolerable rate of stored events

- Level-1 and HLT trigger capability and flexibility, allow to go down to rather low masses and p_T, especially for low p_T muon triggers, compatible with the (relatively) low instantaneous luminosities at LHC startup
 - Stricter triggers now in place to limit storage rates.

Muon Triggers

• Two trigger levels

L1: hardware muon system and calorimeters only

HLT: software

matching of different sub-detectors. Fast local tracker reconstruction for muons

- Trigger requirements changing with increasing luminosity:
 - Single muons:
 - p_T > 3 GeV threshold at the startup
 - Gradually increasing (p_T > 7 GeV at L ~ 10³¹ cm⁻² s⁻¹)

- Double muons:

 L1 requirements only at the startup, no p_T threshold (not prescaled until 10³¹ Hz cm⁻²)

allows to go down to 0 quarkonium p_T in the forward region

• At L ~ 10³¹ cm⁻² s⁻¹ ad-hoc strategies adopted for quarkonia (combination of L1 and HLT muons, or HLT muon and track in specific invariant mass regions... etc.)

[CMS PAS TRK-10-001]

Tracker performance

Tracker performance well understood

- Performance in agreement with the simulation
- Excellent level of detector alignment

	Data 7 TeV	MC startup	MC no
DMR			misalignment
	RMS [µm]	RMS [µm]	RMS [µm]
BPIX (u')	1.6	3.1	0.9
BPIX (v')	5.5	8.9	1.8
FPIX (u')	5.7	10.7	2.5
FPIX (v')	7.3	14.4	6.1
TIB (u')	5.1	10.1	3.2
TOB (<i>u</i> ′)	7.5	11.1	7.5
TID (u')	4.0	10.4	2.4
TEC (u')	10.1	22.1	2.9

J/ψ cross section

F. Palla - INFN Pisa

- Exploit kinematics of semi-leptonic decay due to heavy quark mass
 - Muon transverse momentum w.r.t. jet on average larger for b-quark
 - Fraction of events with b-decays extracted from a fit with simulated p_T^{rel} templates

F. Palla - INFN Pisa

B jets cross section

- By tagging B jets we can extend the cross section measurement to large transverse momenta
 - Exploit secondary vertex reconstruction with silicon pixel detector
 - 50-60% tagging efficiency for p_T=100 GeV with 0.1% background contamination
- **Different systematic uncertainties w.r.t. semi-leptonic decays**

Ratio to inclusive jets

R= B-jets cross section All jets cross section ~2-3%

- Jet energy corrections and luminosity systematic uncertainties cancel out
- Pythia in perfect agreement in measured range
- Indicates shape discrepancies with NLOJet++/MC@NLO ratio

CMS Inclusive jet: CMS PAS QCD-10-011

Prospects

Analysis of the entire 2010 data set on-going

• many results expected:

- quarkonia production and polarizations in fine pt-y bins
- χc and X(3872) production studies
- b/bbar correlated production to study production mechanisms
- B-hadron and B-meson production, like: $B^0 \rightarrow J/\psi K_S$, $\Lambda_b \rightarrow J/\psi \Lambda$, $B_c \rightarrow J/\psi \pi$

Conclusions

- Heavy flavour production at $\sqrt{s}=7$ TeV investigated with several techniques using data collected until Summer 2010 (up to 3 pb⁻¹)
 - Quarkonia analyses allow first theory tests to be performed from 0 to ~30 GeV/ c.
 - Statistical accuracy of ~2%, but systematics ~12% limited by luminosity. Good agreement with theory models for prompt J/ ψ production; prompt J/ ψ production not so well described by models we used.
 - + Exclusive B-hadrons reconstructed in J/ ψ decay modes:
 - $B_S \rightarrow J/\psi \varphi$, $B^{\pm} \rightarrow J/\psi K^{\pm}$
 - Semi-leptonic decays into muons between 6 and 30 GeV/c:
 - Statistical error 5-20% with 8 nb⁻¹ and systematic error ~15-20%
 - MC@NLO underestimates the cross section at low pt and central region
 - Jet cross section with secondary vertex b-tagging between 18 and 300 GeV
 - Statistical error ~2% with 60 nb^{-1} and systematic ~20%
 - Reasonable agreement with MC@NLO
- The proton LHC run has delivered ~43 pb-1 data, which amounts to >1 Million J/ψ and ~100,000 Y(1S) decays to dimuons, more analyses in the pipeline

Backup slides

ecomposition of b-jet spectrum in p-p

- Flavour creation
- Large NLO contributions:
 - Flavour Excitation
 - Gluon splitting
- Test benchmark for perturbative QCD, MC tools and detector performance
 - Long standing problems with lower energy data resolved
 - Measurements could have smaller errors than NLO QCD predictions currently available

2 to 3 processes dominant at the LHC!

F. Palla - INFN Pisa

 \sim

 $\sim \sim \sim$

 $\sim \sim \sim$

Inclusive J/Psi cross section

I/1b	, [/1b.		$d^2\sigma = $	1				
$p_{\mathrm{T}}^{\prime \prime \varphi}$	$\langle p_{\rm T}^{\prime \prime \Psi} \rangle$	$rac{a - \sigma}{d p_{\mathrm{T}} d y} \cdot \mathrm{BR}(\mathrm{J}/\psi ightarrow \mu^+ \mu^-) \ (\mathrm{nb}/\ \mathrm{GeV}/c)$						
(GeV/c)	(GeV/c)	$\lambda_{ heta} = 0$	$\lambda_{ heta}^{CS} = -1$	$\lambda_{\theta}^{CS} = +1$	$\lambda_{ heta}^{HX} = -1$	$\lambda_{ heta}^{HX} = +1$		
y < 1.2								
6.50 - 8.00	7.29	$7.63 \pm 0.30 \pm 0.97$	9.28 ± 1.20	$\overline{6.99\pm0.91}$	$\overline{5.70\pm0.74}$	9.14 ± 1.20		
8.00 - 10.00	8.91	$3.23 \pm 0.11 \pm 0.38$	3.81 ± 0.47	3.00 ± 0.37	2.45 ± 0.30	3.85 ± 0.48		
10.00 - 12.00	10.90	$1.18 \pm 0.05 \pm 0.14$	1.35 ± 0.17	1.10 ± 0.14	0.93 ± 0.12	1.37 ± 0.17		
12.00 - 30.00	15.73	$0.116 \pm 0.005 \pm 0.013$	0.130 ± 0.016	0.110 ± 0.013	0.096 ± 0.012	0.129 ± 0.016		
1.2 < y < 1.6								
2.00 - 3.50	2.73	$68.8 \pm 6.3 \pm 13.0$	50.4 ± 9.9	84.6 ± 19.0	50.5 ± 9.9	84.5 ± 19.0		
3.50 - 4.50	4.02	$46.1 \pm 2.7 \pm 6.5$	37.3 ± 5.7	52.8 ± 8.4	33.9 ± 5.2	56.4 ± 8.8		
4.50 - 5.50	5.03	$28.6 \pm 1.3 \pm 3.9$	28.2 ± 4.1	28.7 ± 4.1	20.8 ± 3.0	35.0 ± 5.0		
5.50 - 6.50	5.96	$16.5\pm0.8\pm2.0$	17.8 ± 2.3	16.0 ± 2.0	12.3 ± 1.6	20.1 ± 2.6		
6.50 - 8.00	7.20	$7.64 \pm 0.30 \pm 0.87$	8.71 ± 1.10	7.19 ± 0.87	5.80 ± 0.71	9.19 ± 1.10		
8.00 - 10.00	8.81	$2.76 \pm 0.14 \pm 0.32$	3.11 ± 0.39	2.62 ± 0.33	2.18 ± 0.27	3.24 ± 0.41		
10.00 - 30.00	12.99	$0.182 \pm 0.010 \pm 0.021$	0.204 ± 0.026	0.173 ± 0.022	0.151 ± 0.019	0.202 ± 0.026		
		1	1.6 < y < 2.4					
0.00 - 0.50	0.32	$36.8 \pm 2.2 \pm 6.0$	26.1 ± 4.5	46.5 ± 8.0	26.3 ± 4.5	45.6 ± 7.8		
0.50 - 0.75	0.63	$83.2 \pm 4.5 \pm 15.3$	59.5 ± 11.3	105.1 ± 19.9	60.4 ± 11.6	103.2 ± 19.3		
0.75 - 1.00	0.88	$102.3 \pm 5.0 \pm 16.9$	72.8 ± 13.3	128.9 ± 23.7	75.1 ± 13.4	125.0 ± 22.8		
1.00 - 1.25	1.13	$121.9 \pm 5.3 \pm 21.1$	87.1 ± 14.8	152.4 ± 27.1	91.11 ± 18.2	146.2 ± 25.6		
1.25 - 1.50	1.37	$127.7 \pm 5.6 \pm 21.6$	91.1 ± 15.6	160.1 ± 29.3	96.2 ± 17.7	152.9 ± 28.4		
1.50 - 1.75	1.62	$132.5 \pm 5.3 \pm 21.9$	94.7 ± 15.8	165.9 ± 27.7	101.3 ± 16	157.8 ± 25.4		
1.75 - 2.00	1.87	$121.9 \pm 6.2 \pm 17.9$	87.4 ± 13.6	152.1 ± 24.7	93.6 ± 14.9	143.9 ± 23.1		
2.00 - 2.25	2.12	$125.2 \pm 6.1 \pm 18.7$	89.8 ± 13.9	156.3 ± 24.7	97.1 ± 14.9	147.3 ± 23.6		
2.25 - 2.50	2.37	$96.3 \pm 4.2 \pm 14.1$	69.0 ± 10.2	120.5 ± 18.1	74.3 ± 11	114 ± 16.8		
2.50 - 2.75	2.63	$96.4 \pm 7.7 \pm 13.0$	69.8 ± 11.1	119.3 ± 18.6	74.8 ± 11.8	113.2 ± 18.1		
2.75 - 3.00	2.87	$77.9 \pm 3.7 \pm 10.7$	56.3 ± 8.0	96.4 ± 13.9	60.3 ± 8.5	91.6 ± 13.1		
3.00 - 3.25	3.12	$73.7 \pm 3.5 \pm 10.0$	53.8 ± 7.7	91.2 ± 13.0	57.6 ± 8.3	86.5 ± 13.0		
3.25 - 3.50	3.37	$66.7 \pm 3.2 \pm 8.8$	48.5 ± 6.9	82.8 ± 12.0	52.1 ± 7.3	78.3 ± 11.0		
3.50 - 4.00	3.74	$49.6 \pm 1.7 \pm 7.1$	37.0 ± 5.5	60.6 ± 9.0	39.0 ± 5.8	58.3 ± 8.6		
4.00 - 4.50	4.24	$39.7\pm1.4\pm5.0$	30.0 ± 4.0	47.3 ± 6.3	31.4 ± 4.2	46.0 ± 6.1		
4.50 - 5.50	4.96	$24.5 \pm 0.7 \pm 3.3$	19.3 ± 2.6	28.7 ± 4.0	19.6 ± 2.7	28.2 ± 3.9		
5.50 - 6.50	5.97	$12.6\pm0.4\pm1.7$	10.8 ± 1.4	14.0 ± 1.9	10.3 ± 1.4	14.3 ± 1.9		
6.50 - 8.00	7.17	$6.20 \pm 0.24 \pm 0.74$	5.70 ± 0.72	6.61 ± 0.84	5.13 ± 0.65	6.94 ± 0.88		
8.00 - 10.00	8.84	$2.41 \pm 0.11 \pm 0.28$	2.41 ± 0.31	2.44 ± 0.31	2.04 ± 0.26	2.64 ± 0.34		
10.00 - 30.00	13.06	$0.149 \pm 0.008 \pm 0.019$	0.155 ± 0.021	0.148 ± 0.021	0.132 ± 0.019	0.161 ± 0.023		

F. Palla - INFN Pisa

Prompt and non-prompt x-sec

$p_{\rm T}$ $BR(J/\psi \to \mu^+ \mu^-) \cdot \frac{d^2 \sigma_{\rm prompt}}{dp_{\rm T} d\mu} ({\rm nb}/{\rm GeV}/c)$					$p_{\rm T}^{J/\psi}$	$BR(J/\psi \to \mu^+\mu^-) \cdot \frac{d^2\sigma_{\rm non-prompt}}{dn_{\pi}du}$	
(GeV/c)	$\lambda_ heta=0$	$\lambda_{ heta}^{CS} = -1$	$\lambda_{\theta}^{CS} = +1$	$\lambda_{ heta}^{HX} = -1$	$\lambda_{ heta}^{HX} = +1$	(GeV/c)	(nb/GeV/c)
y < 1.2						y < 1.2	
6.5 - 10.0	$3.76 \pm 0.13 \pm 0.47$	4.63 ± 0.60	3.45 ± 0.45	2.63 ± 0.34	4.79 ± 0.62	6.5 - 10.0	$1.30 \pm 0.08 \pm 0.19$
10.0 - 30.0	$0.134 \pm 0.033 \pm 0.016$	0.161 ± 0.044	0.123 ± 0.033	0.099 ± 0.026	0.164 ± 0.045	10.0 - 30.0	$0.087 \pm 0.024 \pm 0.010$
1.2 < y < 1.6					1.2 < y < 1.6		
2.0 - 4.5	$50.6 \pm 3.6 \pm 8.4$	36.4 ± 6.5	63.6 ± 11.6	36.3 ± 6.5	63.1 ± 11.4	2.0 - 4.5	$8.67 \pm 1.36 \pm 2.71$
4.5 - 6.5	$18.4\pm0.7\pm2.4$	17.3 ± 2.3	19.1 ± 2.6	13.3 ± 1.8	22.7 ± 3.1	4.5 - 6.5	$4.04 \pm 0.41 \pm 0.79$
6.5 - 10.0	$3.85 \pm 0.15 \pm 0.44$	4.11 ± 0.49	3.74 ± 0.45	2.87 ± 0.34	4.67 ± 0.56	6.5 - 10.0	$0.98 \pm 0.09 \pm 0.11$
10.0 - 30.0	$0.116 \pm 0.009 \pm 0.014$	0.127 ± 0.018	0.111 ± 0.015	0.093 ± 0.013	0.133 ± 0.019	10.0 - 30.0	$0.065 \pm 0.007 \pm 0.008$
1.6 < y < 2.4					1.6 < y < 2.4		
0.00 - 1.25	$71.9 \pm 2.4 \pm 11.2$	49.7 ± 7.9	92.5 ± 14.7	51.0 ± 8.1	90.3 ± 14.3	0.00 - 1.25	$4.31 \pm 1.59 \pm 3.54$
1.25 - 2.00	$116.2 \pm 3.5 \pm 16.8$	80.8 ± 11.9	149.1 ± 22.0	86.7 ± 12.8	140.7 ± 20.8	1.25 - 2.00	$11.0\pm1.8\pm4.2$
2.00 - 2.75	$93.7 \pm 3.4 \pm 12.4$	65.8 ± 9.1	118.8 ± 16.3	72.7 ± 10.0	110.3 ± 15.2	2.00 - 2.75	$11.9\pm1.4\pm3.4$
2.75 - 3.50	$62.6 \pm 2.0 \pm 7.9$	44.5 ± 5.7	78.8 ± 10.2	49.1 ± 6.4	72.7 ± 9.5	2.75 - 3.50	$10.1\pm1.1\pm1.6$
3.50 - 4.50	$37.4 \pm 1.1 \pm 4.9$	27.4 ± 3.7	45.7 ± 6.2	29.9 ± 4.1	42.8 ± 5.8	3.50 - 4.50	$7.19 \pm 0.65 \pm 1.25$
4.50 - 6.50	$15.2\pm0.4\pm2.0$	11.9 ± 1.6	18.0 ± 2.4	12.6 ± 1.7	17.1 ± 2.3	4.50 - 6.50	$3.28 \pm 0.24 \pm 0.53$
6.50 - 10.00	$3.08 \pm 0.11 \pm 0.37$	2.79 ± 0.35	3.36 ± 0.42	2.64 ± 0.33	3.37 ± 0.42	6.50 - 10.00	$0.95 \pm 0.07 \pm 0.13$
10.00 - 30.00	$0.093 \pm 0.007 \pm 0.012$	0.092 ± 0.014	0.096 ± 0.014	0.082 ± 0.012	0.100 ± 0.015	10.00 - 30.00	$0.055 \pm 0.005 \pm 0.007$