

ALICE heavy quarks

Andrea Rossi, Padova Univ. & INFN on behalf of the ALICE collaboration

Contents

- Heavy Flavour targets in ALICE
- ALICE detector and 2010 data taking conditions
- J/ ψ production cross section at forward and mid-rapidity
- Cross section for heavy flavour decaying into muons
- Heavy flavour electron signal at central rapidity
- \bullet D mesons dN/dp, and D spectra ratios
- Summary

Heavy-flavour physics target in pp collisions for ALICE

* Measure total and pt-differential cross section for charm and beauty production

* Measure total and pt-and y- differential cross section for quarkonia production

- * Mechanism of quarkonia production not fully understood yet
- * Charmonium and bottomonium sensitive probe of deconfinement in Pb-Pb

Heavy-flavour production at the LHC

NLO predictions (ALICE baseline for charm & beauty)

MNR code (FO NLO): Mangano, Nason, Ridolfi, NPB373 (1992) 295. Shadowing (Pb-Pb), EKS98, EPS08: Eskola et al., EPJC9 (1999) 61; JHEP07 (2008) 102

system, √s	pp, 7 TeV	pp, 14 TeV	Pb-Pb (0-5%), 2.76 TeV	Pb-Pb (0-5%), 5.5 TeV
$\sigma^{Q\bar{Q}}_{_{NN}}$ [mb]	<mark>6.9</mark> / 0.23	11.2 / 0.5	<mark>2.1</mark> / 0.075	<mark>3.4</mark> / 0.14
$N^{Q ar Q}_{ m tot}$	<mark>0.10</mark> / 0.003	<mark>0.16</mark> / 0.007	56 / 2	<mark>90</mark> / 3.7

(Factor 2 uncertainty from pQCD scales and mass choices)

The ALICE detector

more details on H. Caines talk yesterday

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 4

Trigger and Data sample

- •"Minimum bias", based on interaction trigger:
 - SPD or V0-A or V0-C
 - $\,\,$ at least one charged particle in 8 η units
 - \sim ~95% of $\sigma_{_{inel}}$
 - read out all ALICE
- Single-muon trigger:
 - forward muon in coincidence with Min Bias
 - read out MUON, SPD, V0, FMD, ZDC
- Both activated in coincidence with the BPTX beam pickups
- Since March 31st 2010, collected
 - ~8×10⁸ minimum bias triggers
 - ~1.3×10⁸ muon triggers

- Results presented on this talk based on:
 - ~10⁸ minimum bias triggers
 - ~10⁷ muon triggers

Quarkonia

(TRD, $e/\pi ID$)

е

e

TPC (tracking & vertexing, PID) ITS (tracking & vertexing)

ALICE

MUON (tracking,id)

Lt

Measured both in the di-electron (midrapidity, TRD) and di-muon (forward rapidity, MUON) channel

$J/\psi \rightarrow \mu^+\mu^-$: Analysis

Data sample: L = 11.6 nb-1

Differential distributions studied in 7 p_1 -bins (0-8 GeV/c) and 5 y-bins (2.5 < y< 4)

$J/\psi \rightarrow \mu^+\mu^-$: Results

- Main systematic errors:
 - unknown polarization -> -21 +12% (from $\alpha = \pm 1$ in the helicity frame)
 - cross section normalization: 10%
- Integrated cross section:

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 8

$J/\psi \rightarrow \mu^+\mu^-$: Results

- Main systematic errors:
 - unknown polarization -> -21 +12% (from α =±1 in the helicity frame)
 - cross section normalization: 10%
- Integrated cross section:

 $\sigma_{J/\psi}(2.5 < y < 4) = 7.25 \pm 0.29(stat.) \pm 0.98(syst.)^{+0.87}_{-1.50}(syst. pol.) \mu b$

$J/\psi \rightarrow e^+e^-$: Analysis

- High quality tracks in TPC and ITS
 - point in pixels to reduce γ conversions
- e PID from TPC dE/dx
 - next: exploit TOF, TRD
- Inclusive J/ ψ :
 - No correction for B feed-down
- Data sample
 - ~ 3.10⁸ min. bias ev. -> L~4.0 nb⁻¹
- Signal extraction:
 - bin counting after like-sign back. subtraction $(N_{J/\psi} = 123 \pm 15)$

$J/\psi \rightarrow e^+e^-$: Results

J/ψ : comparison with predictions

- Extend high p, coverage
- Measure ψ ' at forward rapidity

Open Charm and Beauty: on-going studies and measurements

$\checkmark D, B \rightarrow \mu + X$

MUON (tracking, id)

μ

Forward single Muons from HF: analysis

Muon sources:

→remove hadrons and low-pt secondaries by requiring a muon trigger signal
 →remove decay muons by subtracting MC dN/dp, normalized to data at low pt

- alternative method: use muon distance of closest approach to the primary vertex
- what is left are muons from charm and beauty
- apply corrections for efficiencies

Forward single Muons from HF: results

- d σ /dp, for D and B decay muons in the range 2 < p, < 6.5 GeV/c
- Data agree with FONLL prediction in shape and normalization

Open Charm and Beauty: on-going studies and measurements

> $B \rightarrow X J / \Psi \rightarrow X e^+ e^$ under study $B \rightarrow \geq 5 pr$ tagged b-jets

 $\checkmark D, B \rightarrow e + X$

ITS (tracking & vertexing)

TPC (tracking, e/π id)

(TRD, e/π id) TOF (e/π id)

Single Electrons: analysis

- High quality tracks in TPC+ITS
 - Hit in the innermost ITS layer to reduce γ– conversions (beam pipe + ~1/3 in the first SPD layer, 0.5% X₀)
- Electron identification: TOF + TPC-dE/dx
 - TOF rejects K (<1.5 GeV/c) and protons (<2 GeV/c)
 - TPC: asymmetric cut around electron Bethe-Bloch
 - measure π contamination by fitting the dE/dx with a double Gaussian
- Two procedures to get HF electrons spectrum:
 - subtract "cocktail" of photonic electron sources (à la RHIC, *next slide*)
 - cut on impact parameter w.r.t. primary vertex

to pick out electrons from B (in progress)

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Ro

A. Rossi, Padova University 17

Single Electrons: performance results

 dN/dp_{t} in 0.4 < p_{t} < 4 GeV/c

Large signal from D and B decay electrons in ratio to cocktail

Fermilab, 20/11/2010 Standard model benchmarks at t

Spectrum corrected for:

- residual hadron contamination (subtracted)
- » efficiency and acceptance (from MC)
- p, unfolding for e⁻ bremsstrahlung

Cocktail based on π^0 cross-section measured from double γ conversion reconstruction

Open Charm and Beauty: on-going studies and measurements $\checkmark D^0 \rightarrow K^- \pi^+$ TOF (K/ π id) $\checkmark D^+ \rightarrow K^- \pi^+ \pi^+$ $\checkmark D^{*+} \rightarrow D^0 \pi^+$ π $\checkmark D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ TPC (tracking, K/π id) $\checkmark D^+ \rightarrow K^- K^+ \pi^+$ ITS (tracking & vertexing) $\Lambda^+ \to p K^- \pi^+$

Main selection strategy

Displaced secondary vertices topology (-> ITS)

- (e.g. $D^0 \rightarrow K^- \pi^+$) : pair of opposite charge tracks with large impact parameters
- good pointing of reconstructed D momentum to the primary vertex
 - Tracking and vertexing performance is crucial!

Main selection strategy

Displaced secondary vertices topology (-> ITS)

- (e.g. $D^0 \rightarrow K^- \pi^+$) : pair of opposite charge tracks with large impact parameters
- good pointing of reconstructed D momentum to ¹⁵ the primary vertex 0.3
 - Tracking and vertexing performance is crucial!
- **PID selection (TOF+TPC)** to reduce background

(mainly via K identification)

D meson signals: $D^0 \rightarrow K^- \pi^+$

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A.

A. Rossi, Padova University 21

D meson signals: $D^+ \rightarrow K^- \pi^+ \pi^+$

$\sim 10^8$ events, 2- 12 GeV/c (6 bins)

Fer.....

Significance (3o) 5.6

S (3o) 95 ± 17

B (3 σ) 195 \pm 10

D meson signals: $D^{*+} \rightarrow D^0 \pi^+$

\sim 1.4 \cdot 10⁸ events, 2-18 GeV/c (5 bins)

ITS standalone tracking crucial for the low- $p_{_{\rm T}}$ D*+ bins

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC

A. Rossi, Padova University 23

D mesons: corrected spectra

D mesons: corrected spectra

dN/dp, spectra in |y|< 0.5 statistical errors only

ALICE

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 25

D meson ratios

• p_t independent in the range 3-10 GeV/c

D meson ratios

Other charm hadron ongoing analyses

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC

A. Rossi, Padova University 27

Summary

ALICE started to deliver heavy flavour physics results...

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 28

...many others coming soon!

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000003BBE693

Extra

ALICE detector configuration in 2010

- ITS, TPC, TOF, HMPID, MUON, V0, T0, FMD, PMD, ZDC (100%)
- TRD (7/18)
- EMCAL (4/12)
- PHOS (3/5)

The forward muon spectrometer

$J/\psi {-}{>}\mu^{+}\mu^{-}$: syst. errors on cross section

Source of systematic error		
Uncertainty on signal extraction	7.5 %	
$p_{\scriptscriptstyle T}$ and y shapes used in the MC	p _⊤ : +2 -1.3%, y: +1.4 -1.3%	
Trigger efficiency	4%	
Tracking efficiency	2%	
Normalization	10 %	
Total systematic error	13.5 %	
Polarization (helicity frame)	+12 -20.7 %	

Large systematic error from luminosity

-> to be improved with next LHC Van der Meer scans

$J/\psi \rightarrow \mu^+\mu^-$: acceptance x efficiency

Based on simulations performed separately for each LHC period, in order to reproduce in a realistic way, the detector status Realistic y and $p_T J/\psi$ distributions $p_T \rightarrow CDF$ extrapolation $y \rightarrow CEM$ calculation

D correction has been adopted for the study of differential distributions

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 34

J/ψ -> e⁺e⁻

Acceptance x efficiency:

Systematic error evaluation based on checks on the stability of the cuts applied in the analysis. Dependence on polarization evaluated separately

Systematic errors:

Source of syst. error	
Kinematics	<1%
Track quality,#clusters TPC	10%
PID cuts	10%
Signal extraction range	4%
Normalization	10 %
Total systematic error	18 %

polarization	α=-1	α=1
Helicity	-24.8	11.9
Collins-Soper	-19.7	9.7

J/ψ : comparison with CEM

CEM prediction refers to prompt J/ψ

R.Vogt Phys. Rev. C 81 (2010) 044903

Forward single Muons from HF: analysis

Most delicate step:

• Subtraction of residual secondary and decay muons from π ,K

- p_t>2 GeV/c secondary contribution small (<10%)
 - from MC and varied by 100%
- subtract decay muons by using two different PYTHIA tunes (Perugia-0 and ATLAS-CSC)
- Resulting systematic errors on HF muons:
 - 30% -> 20% from low to high pt

Efficiency >87% for pt >2.5 GeV/c

ALICE's forward muons

Muons identified in the forward spectrometer (-4 < η < -2.5)

Pb-Pb 0-5% 5.5 TeV: single muon statistics for ~1 month (~4 x 10⁸ events)

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 38

Beauty in the barrel: $B \rightarrow e + X$

Heavy Flavour electrons: efficiency

Efficiency and acceptance correction using simulations: Minimum bias (Pythia+Phojet)

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 40

The electron cocktail

All sources of electrons:

- Dalitz decays of light neutral mesons (π^0 , η , ω , η' , $\varphi \rightarrow \gamma e^+e^-$)
- Photon conversions in material
- **Direct radiation** (direct photon conversions, virtual photons $\gamma^* \rightarrow e^+e^-$)
- Weak kaon decays (e.g. $K^{\pm} \rightarrow \pi^0 e^{\pm} v_{e}$)
- Dielectron decays of vector mesons (ρ , ω , $\varphi \rightarrow e^+e^-$)
- HEAVY FLAVOR DECAYS (open charm and beauty, J/ψ, Y)

Current cocktail ingredients:

- Neutral pions (based on the measured π⁰ spectrum!)
- Heavier mesons: η, ρ, ω, φ, η'
- Photon conversions

The electron cocktail

• DATA: ALICE measured π⁰ spectrum

reconstructed with photon conversions

Spectra are fit with the Hagedorn function:

$E\frac{d^{3}\sigma}{dp^{3}} = \frac{c}{\left(p_{0} + \frac{p_{T}}{p_{1}}\right)^{n}}$

NLO prediction for π⁰

B.Jager, A. Schaefer, M. Stratmann, W. Vogelsang Phys. Rev. D67 (2003) 054005

OR

The electron cocktail

Heavier mesons:

- Included: $\eta, \eta', \rho, \omega, \phi$
- Implemented via m₋ scaling

Verified for η in ALICE !

Electrons from photon conversions

- Not rejected: those from the beam pipe and ~1/3 of first pixel layer ($\approx 0.5 \% X_0$)
- Ratio of conversions to Dalitz electrons:

$$\frac{Conv.}{Dalitz} = \frac{BR^{\gamma\gamma} \times 2 \times \left(1 - e^{-\frac{7}{9} \times \frac{X}{X_0}}\right) \times 2}{BR^{Dalitz} \times 2} = 0.739$$

20

40

0

60

80

100 120

160

180 R [cm]

140

Heavy Flavour in pp as a reference for PbPb

Beauty energy loss expected lower due to dead cone effect

🛓 Fermilab, 20/11/2010 🛛 Standard model benchmarks at the Tevatron and LHC 👘 A. Rossi, Padova University 45

Study of energy loss mechanisms

Fermilab, 20/11/2010 Standard model benchmarks at the Tevatron and LHC A. Rossi, Padova University 46

Quarkonia at the LHC

Charmonium and bottonium production sensitive probe of deconfinment (~Debye screening)

Bkg input: $dN_{ch}/dy=4000$ in central Pb-Pb. $S/\sqrt{S+B}$ for 1 month Fermilab, 20/1

., Padova University 48